
Barrelfish Capabilities

Ross McIlroy

Systems and Networking Group

Microsoft Research Cambridge

http://www.systems.ethz.ch/

Overview

• Give a taste of how Barrelfish manages

resources using a capability-based model

• Much of the details are hidden from user-level

apps by libbarrelfish

• At the end of the talk, I will outline the ways in

which you are most likely to interact with

capabilities

http://www.systems.ethz.ch/

What are Capabilities

• Owning a capability gives a domain (application)

the ability to access a particular resource

– Physical RAM

– Page table entries

– CPU time (dispatcher)

– Communication channel endpoints

• A domain starts with a small number of

capabilities, get more from other services

– Ram Caps from the memserv

– Endpoints from the other domain you wish to talk to

http://www.systems.ethz.ch/

Capability Types
Null Empty slot

PhysAddr Physical address range

RAM Physical address range in memory

Frame Mappable address range of memory

DevFrame Mappable address range of device memory

Vnode_* Page table node

CNode Node to store other capabilities

FCNode Foreign CNode – Cnode on a different core

Dispatcher A dispatcher’s control block

Endpoint Endpoint of an IDC channel

Kernel Special syscall privileges (monitor)

IO Legacy IO range

IRQ Capability to handle interrupts

Others… Notify, BMPEndpoint, BMPTable, Domain, etc.

http://www.systems.ethz.ch/

Capability Address Space

• Each domain’s capabilities are stored in a guarded

capability table, known as its cspace

• The cspace consists of a set of cnodes, each of

which holds a power-of-two number of capability slots

• The cspace is opaque to user-level code

– User level code gets a capref pointing to the capability’s slot

– The kernel uses this capref to traverse the cspaces guarded

capability table

http://www.systems.ethz.ch/

Cspace Lookup Example

Cnode Cap

Cnode Cap

Cnode Cap

Cnode Cap

Ram Cap

Ram Cap

Endpoint Cap

Endpoint Cap

Root CNode

0

1

2

3

4

5

6

7

Null Cap 15

…

Resolves 4 bits

http://www.systems.ethz.ch/

Cspace Lookup Example

Cnode Cap

Cnode Cap

Cnode Cap

Cnode Cap

Ram Cap

Ram Cap

Endpoint Cap

Endpoint Cap

Root CNode

0

1

2

3

4

5

6

7

Capability Address = 0x2A21

Null Cap 15

…

Resolves 4 bits

http://www.systems.ethz.ch/

Cspace Lookup Example

Cnode Cap

Cnode Cap

Cnode Cap

Cnode Cap

Ram Cap

Ram Cap

Endpoint Cap

Endpoint Cap

Root CNode

0

1

2

3

4

5

6

7

Capability Address = 0x2A21

Null Cap 15

…

Resolves 4 bits

Ram Cap

Cnode Cap

Cnode Cap

Ram Cap

0

1

2

3

Resolves 2 bits

http://www.systems.ethz.ch/

Cspace Lookup Example

Cnode Cap

Cnode Cap

Cnode Cap

Cnode Cap

Ram Cap

Ram Cap

Endpoint Cap

Endpoint Cap

Root CNode

0

1

2

3

4

5

6

7

Guard = 0x28
Guard bits = 6

Capability Address = 0x2A21

Null Cap 15

…

Resolves 4 bits

Ram Cap

Cnode Cap

Cnode Cap

Ram Cap

0

1

2

3

Resolves 2 bits

http://www.systems.ethz.ch/

Cspace Lookup Example

Cnode Cap

Cnode Cap

Cnode Cap

Cnode Cap

Ram Cap

Ram Cap

Endpoint Cap

Endpoint Cap

Root CNode

0

1

2

3

4

5

6

7

Guard = 0x28
Guard bits = 6

Capability Address = 0x2A21

Null Cap 15

…

Resolves 4 bits

Ram Cap

Cnode Cap

Cnode Cap

Ram Cap

0

1

2

3

Resolves 2 bits

Frame Cap

Frame Cap

Frame Cap

Frame Cap

0

1

2

3
Resolves 2 bits

http://www.systems.ethz.ch/

Operations on Capabilities

• slot_alloc() – Allocate a free slot in my cspace

– Calls cnode_create if required to create another cnode

• cap_copy() - Create a new copy of capability (in a new slot)

• cap_mint() - Copy capability, changing type specific parameters

• cap_retype() - Create one or more descendent capabilities

– These could be of a different type (e.g., RAM to Frame)

• cap_delete() - Delete this cap, but leave the slot for reuse

• cap_destroy()- Delete this cap and free the slot

• cap_revoke() - Delete all copies and decedents, but not this cap

http://www.systems.ethz.ch/

Retyping Capabilities

• Rules are specified using the Hamlet DSL

(capabilities/caps.hl)

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

RAM

Retype

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr PhysAddr

Retype

RAM

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr PhysAddr

Frame

Retype

RAM

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr PhysAddr

Frame VNode

Retype

RAM

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr PhysAddr

Frame VNode

Frame

Copy

RAM

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr PhysAddr

Frame VNode

Frame

Delete

RAM

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr PhysAddr

VNode

Frame

RAM

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

PhysAddr PhysAddr PhysAddr

VNode

Frame

Revoke

RAM

PhysAddr

http://www.systems.ethz.ch/

Operations on Capabilities

PhysAddr

0x10000000 0x20000000

Revoke

http://www.systems.ethz.ch/

Sending Capabilities

• Capabilities can be sent between domains over

IDC channels

– message send_cap(cap sent_cap);

• Local Message Passing (LMP)

– Copy capability into the destination’s cspace

• Cross-Core Message Passing (e.g., UMP)

– Capabilities are held by the CPU driver (kernel)

– Barrelfish has one CPU driver per core (multikernel)

– Need to transfer capability to the destination core’s CPU

driver

http://www.systems.ethz.ch/

Cross-Core Capabilities

• Some caps cannot be sent cross-core

– dispatcher, endpoint

• Some are converted to a different type when sent

– cnode -> foreign cnode

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

Retype

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

Retype

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

Retype

http://www.systems.ethz.ch/

Cross-Core Capabilities

CPU Driver

Core 0

CPU Driver

Core 1

NIC Driver
TCP/IP
Stack

Monitor Monitor

Retype

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Remote Cap DB

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

Retype Request

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

R

Retype Request

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

R

Ack

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

R

Ack

R

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

R

R

Retype

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

R

R

Retype

Retype Request

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

R

R

Retype

Nack

R

http://www.systems.ethz.ch/

Centralised Consensus (Serializer)

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

R

R

Nack

R

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Remote Cap DB

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L

Prepare to Retype

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L L

Prepare to Retype

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L L

OK to Retype

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L

R

L R

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L

R

L R

Ack Retype

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

Retype

L

R R

L R R

Ack Retype

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

L

R

Retype

R

L R R

http://www.systems.ethz.ch/

Two Phase Commit

Monitor 0

CPU Driver 0

Monitor 1

CPU Driver 1

Monitor 2

CPU Driver 2

Monitor 3

CPU Driver 3

L

R

Nack

R

L R R

http://www.systems.ethz.ch/

Scalability of Cross-Core Coordination

http://www.systems.ethz.ch/

How You Might Interact With Caps

• Mapping a frame into the address space of two

different domains:

frame_alloc(&framecap, size, &actual_size);

<transfer cap>
vspace_map_one_frame(&virAddr, size, framecap,

 &memobj, &vregion);

http://www.systems.ethz.ch/

How You Might Interact With Caps

• Map a buffer for a hardware device:

bufferAddr = alloc_map_frame(FLAGS, size, &framecap);

frame_identify(frame, &physAddr);

http://www.systems.ethz.ch/

Further Info

• Technical Note #10 – Spec

• Debugging:

– debug_cspace()

– print_cspace shell command in fish

• Code:

– lib/barrelfish/capabilities.c

– kernel/capabilities.c

– usr/monitor/rcap_db_twopc.c

• Based upon seL4 capability model:

– http://ertos.nicta.com.au/research/sel4/

http://www.systems.ethz.ch/
http://ertos.nicta.com.au/research/sel4/

