
Porting Barrelfish

Orion Hodson

Microsoft Research

http://www.systems.ethz.ch/

Goals of this talk

1. To identify the parts that require porting

2. To help you to estimate time and effort involved

3. To provide tips and pointers to save you time

http://www.systems.ethz.ch/

Platforms Today

X86-64

X86-32

X86-SCC

ARM v5

Beehive
No MMU so implements Single Address Space
32-bit RISC
FPGA and Simulated hardware

MMU Support
64-bit
Commodity Hardware

MMU Support
32-bit
Commodity Hardware

http://www.systems.ethz.ch/

System Architecture

Core 0

CPU driver

Monitor

PCI

SKB

Core 1

CPU driver

Core 2

CPU driver
Kernel

User

NIC Driver Web Server

LMP UMP

Monitor Monitor

Memory Server

http://www.systems.ethz.ch/

System Initialization

CPU Driver

Init

Monitor

Memory
Server

spawnd skb pci

HAL

Modules

MMU management

Capability DB

Capabilities

IRQ & Exceptions

Create Init Process

Boot Loader

Timer
Interrupt
Controller

Serial Port

Boot Loader

Init

http://www.systems.ethz.ch/

Porting Tasks

Build System

Libraries

Boot Loader

CPU Driver

Monitor

Hake
Toolchain

setup

libbarrelfish

libspawndomain

H/W Setup
Boot Image

Creation

UMP

HAL

IRQs and
Exceptions

System Calls

Page Table LMP

Init process
setup

libtrace

libc

CPU Driver
Setup

IDC
Flounder UMP

Backend

http://www.systems.ethz.ch/

Porting Efforts

Platform Person-
months

LOC C LOC ASM LOC Haskell
(Flounder UMP)

ARMv5 4 3597 690 TBD

Beehive 8 4397 1513 867

X86-32/SCC 2.5 7104 214 170

X86-64 - 5476 270 74

X86-Shared - 2697 266 940

X86/SCC + X86-64 use X86-Shared code portions.
Beehive port includes time spent with experimental tools (new arch).
Lines of code counted with David A. Wheeler’s SLOCCount.

http://www.systems.ethz.ch/

Standard Build Environment

• Debian / Ubuntu Linux

• GNU toolchain (gcc, gdb, gmake, binutils)

• GHC 6.10 or 6.12.2 onwards for Barrelfish tools
– Packages:

• libghc6-ghc-paths-dev

• libghc6-parsec2-dev

• libgmp3-dev

• Mercurial for version control

• QEMU for emulation (x86,ARM)

• Cscope for source code indexing

http://www.systems.ethz.ch/

Fish Soup

Flounder Hake

Mackerel

Hamlet

Build tool Stub
Compiler

Device Language

Capability
Type tool

Fugu

Errno.h tool

http://www.systems.ethz.ch/

Hake – über Makefile generator

Hake + Hakefiles => Makefile

• Hake sources in:
$(Barrelfish)/hake

• Platform files for different architectures:
ARM.hs Beehive.hs SCC.hs X86_32.hs X86_64.hs

• Hakefile per project.
– Hakefiles may contain arch specific options and files.

• Hake and Hakefile are written in Haskell.

http://www.systems.ethz.ch/

Hakefile syntax

[build application {

 Target = "pci",

 cFiles = ["pcimain.c", "pci.c", "pci_service.c",

 "ioapic.c", "acpi.c", "ht_config.c"],

 flounderServers = ["pci"],

 mackerelDevices = ["pci_hdr0", "pci_hdr1",

 "lpc_ioapic", "ht_config",

 "lpc_bridge"],

 addIncludes = ["/lib/acpi/include"],

 addLibraries = ["mm", "pci", "acpi", "chips", "skb"]

 }

]

http://www.systems.ethz.ch/

What gets built?

Makefile emitted by Hake includes a copy of:

$(Barrelfish)/hake/symbolic_targets.mk

in the top-level of the build directory.

This declares which binaries to build for the system. Standard list is much
longer than required during early phase of port. Initially just need cpu, then
add init_null, before working on init.

Also in symbolic_targets.mk are rules for:

menu.lst is boot script and must match binaries in symbolic_targets.mk.

cscope
ctags
Simulators
docs

http://www.systems.ethz.ch/

Arch and Target directories

• arch directories contain architecture specific

code.

• target directories contain architecture specific

code that may be cross-compiled for

heterogeneous systems.

– Facilities one type of CPU manipulating system

consumed by another.

http://www.systems.ethz.ch/

Compile-Time Assertions

“Assumption is the mother of all stuff-ups”

Engineer and compiler better agree on record layouts.

#include <barrelfish/static_assert.h>

STATIC_ASSERT(expr, msg)

STATIC_ASSERT_SIZEOF(typename, bytes)

STATIC_ASSERT_OFFSETOF(typename, field, bytes)

http://www.systems.ethz.ch/

Tools - asmoffsets

asmoffsets generates include files for assembler

via C compiler.

• Structure sizes

• Field offsets

http://www.systems.ethz.ch/

Tracing

Tracing library is compact.

Gives insight into behaviour.

Can be used to trace new system and existing

ones.

Aquarium renders traces visualizations.

http://www.systems.ethz.ch/

Dispatcher register

All architectures store a pointer to the current user-

space dispatcher in a reserved register, e.g. FS is

used on X86/X64.

Dispatcher is accessed in kernel entry points and

reserving register saves work.

curdispatcher() returns dispatcher_handle_t

=> Can navigate to dispatcher structures.

http://www.systems.ethz.ch/

Dispatcher Structures

dispatcher_arm
• struct dispatcher_shared_arm d;
• struct dispatcher_generic generic;

dispatcher_shared_arm
• struct dispatcher_shared_generic d;
• lvaddr_t crit_pc_low;
• lvaddr_t crit_pc_high;
• union registers_arm enabled_save_area;
• union registers_arm disabled_save_area;
• union registers_arm trap_save_area;

dispatcher_generic
• uintptr_t trap_stack[DISPATCHER_STACK_WORDS];
• uintptr_t stack[DISPATCHER_STACK_WORDS];
• struct thread *current;
• struct thread *runq;
• struct capref dcb_cap;
• ...
• struct trace_buffer *trace_buf;

dispatcher_shared_generic
• uint32_t disabled;
• int haswork;
• lvaddr_t thread_register;
• uint32_t lmp_delivered, lmp_seen;
• lvaddr_t lmp_hint;
• lvaddr_t dispatcher_run;
• lvaddr_t dispatcher_lrpc;
• lvaddr_t dispatcher_pagefault;
• lvaddr_t dispatcher_pagefault_disabled;
• lvaddr_t dispatcher_trap;
• char name[DISP_NAME_LEN];

http://www.systems.ethz.ch/

An Approach to Porting

• Take nearest existing system and use as template.

• Get breakpoint and logging functions
(kernel/include/kernel.h) working early:
– breakpoint(), debug(), printk(), panic()

• Aim for “complete” build ASAP.
– Copy files and rename structures as needed.

– Stub out sections that are not immediately necessary.

– Instrument unimplemented functions with panic(“NYI”)
so it’s obvious when the system is running outside the
region you’ve reasoned about.

http://www.systems.ethz.ch/

SUPPORT MATERIAL

http://www.systems.ethz.ch/

Barrelfish speak in TN-001-Glossary.pdf

http://www.systems.ethz.ch/

