
Systems Group

Dept. Computer Science

ETH Zurich - Switzerland

Threads and

Scheduling

Simon Peter

Systems Group. D-INFK. ETH Zurich 2

Outline

Threads

 Concepts

 Usage/API

Scheduling

 Concepts

 Usage/API

(Italics describe things subject to change)

Threads

Systems Group. D-INFK. ETH Zurich 3

Thread concept

Classic

Unit of execution

Lowest schedulable entity

Preemptable

Affine to a core

Can block

Can be synchronized with

Barrelfish

Can invoke capabilities

Can send/receive messages

Systems Group. D-INFK. ETH Zurich 5

Core 1 Core nCore 0

How are threads scheduled?

Core 1 Core nCore 0

CPU Driver CPU Driver CPU Driver
Kernel/User

How are threads scheduled?

Core 1 Core nCore 0

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Dispatcher Dispatcher Dispatcher

Kernel/User

Dispatcher Dispatcher

How are threads scheduled?

Core 1 Core nCore 0

Domain 1

Domain 2

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Domain n
Dispatcher Dispatcher Dispatcher

Kernel/User

Dispatcher Dispatcher

How are threads scheduled?

Core 1 Core nCore 0

Domain 1

Domain 2

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Thread Thread

Thread Thread

Thread Thread Thread Thread

Thread

Domain n
Dispatcher Dispatcher Dispatcher

Thread Thread Thread Thread Thread

Kernel/User

Thread

Dispatcher Dispatcher

Thread Thread Thread Thread

How are threads scheduled?

Core 1 Core nCore 0

Domain 1

Domain 2

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Thread Thread

Thread Thread

Thread Thread Thread Thread

Thread

Domain n
Dispatcher Dispatcher Dispatcher

Thread Thread Thread Thread Thread

Kernel/User

Thread

Dispatcher Dispatcher

Thread Thread Thread Thread

How are threads scheduled?

RBED Scheduler

Simple Round-

Robin Scheme

Thread support

Implemented in user-space

Provided by a threads package

Currently contained in libbarrelfish

 Public API in include/barrelfish/threads.h

 Provides POSIX-like behavior

Systems Group. D-INFK. ETH Zurich 12

Thread data types

struct thread *thread = thread_self();

 pthread_t equivalent, designates a thread

int (*thread_func_t)(void *data)

 Thread start routine

struct thread_mutex mutex = THREAD_MUTEX_INITIALIZER;

 Mutex (can be nested and tested)

struct thread_cond cond = THREAD_COND_INITIALIZER;

 Condition variable (signal and broadcast semantics)

struct thread_sem sem = THREAD_SEM_INITIALIZER;

 Semaphore (can be tested)

Systems Group. D-INFK. ETH Zurich 13

Thread creation

Create thread on local core

Thread stack caveats

Allocated at thread creation time

Don’t grow dynamically

Not protected against overflow

Systems Group. D-INFK. ETH Zurich 14

struct thread *thread_create_varstack(thread_func_t

start_func, void *arg, size_t stacksize);

struct thread *thread_create(thread_func_t start_func,

void *data);

Thread-local storage

One void * can be associated with each thread

 Bad composability, we know

Pthreads has thread local key-value store instead

Systems Group. D-INFK. ETH Zurich 15

void thread_set_tls(void *tls);

void *thread_get_tls(void);

Other useful thread operations

Return thread ID

Yield timeslice of this thread

Exit thread

Threads are only cleaned up when joined with

 Unless detached

Systems Group. D-INFK. ETH Zurich 16

errval_t thread_join(struct thread *thread, int *retval);

errval_t thread_detach(struct thread *thread);

void thread_yield(void);

void thread_exit(void);

struct thread *thread_self(void);

What we don’t have but POSIX does

Forking-related operations (pthread_atfork())

Attributes

 Scheduling policy set via scheduler API

 No guarded stacks

 No contention scopes

Barriers

 Done elsewhere

Cancelable threads

Timed synchronization primitives

Concurrency levels

Thread signals

Read/write locks

Systems Group. D-INFK. ETH Zurich 17

Multi-core Threading

“Span” your domain to other cores:

Asynchronous operation

Systems Group. D-INFK. ETH Zurich 18

errval_t domain_new_dispatcher(uint8_t core_id,

domain_spanned_callback_t callback, void *callback_arg);

static void domain_spanned(void *arg, errval_t err);

Domain

Core 0

Dispatcher

Core 1

Multi-core Threading

“Span” your domain to other cores:

Asynchronous operation

Systems Group. D-INFK. ETH Zurich 19

errval_t domain_new_dispatcher(uint8_t core_id,

domain_spanned_callback_t callback, void *callback_arg);

static void domain_spanned(void *arg, errval_t err);

Domain

Core 0

Dispatcher

Core 1

Dispatcher

domain_new_dispatcher(1, …)

Multi-core Threading

“Span” your domain to other cores:

Asynchronous operation

Systems Group. D-INFK. ETH Zurich 20

errval_t domain_new_dispatcher(uint8_t core_id,

domain_spanned_callback_t callback, void *callback_arg);

static void domain_spanned(void *arg, errval_t err);

Domain

Core 0

Dispatcher

Core 1

Dispatcher

Spanning a domain

New dispatcher has its own resources

 Monitor, memory server bindings

 Slabs, slots and heaps

 Page tables

 Capabilities

 All other bindings

All other resources are shared

 Virtual address space

 Locks

 Semaphores

 Condition variables

 …

Systems Group. D-INFK. ETH Zurich 21

Multi-core threading

Start thread on different core:

Move thread to different core:

 Currently only supports self-migration

 Doesn’t migrate open connections!

Systems Group. D-INFK. ETH Zurich 22

errval_t domain_thread_create_on(coreid_t core_id,

thread_func_t start_func, void *arg);

errval_t domain_thread_move_to(struct thread *thread,

coreid_t core_id);

Scheduling

Systems Group. D-INFK. ETH Zurich 23

CPU Driver Scheduler

Rate-Based Earliest Deadline First (RBED)

 Algorithm by Scott Brandt, UC Santa Cruz

 Deterministic, versatile, unified model

Best-effort tasks with priorities

 UNIX-style I/O priority boost

Rate-based tasks

 Worst-case execution time, deadline, period

Soft-realtime

 Upcall when deadline missed

Hard-realtime

 Admission control

Systems Group. D-INFK. ETH Zurich 24

Scheduling at multiple timescales

Long-term

 Scheduler manifests

 Divide app into phases with RBED parameters

Mid-term

 Phase changes

Short-term

 Scheduled by RBED

Systems Group. D-INFK. ETH Zurich 25

Scheduler API

Public API in include/barrelfish/resource_ctrl.h

Submit scheduling manifest on local dispatcher

Join the manifest from other dispatchers

Change resource phase from any joined dispatcher

Systems Group. D-INFK. ETH Zurich 26

errval_t rsrc_manifest(const char *manifest, rsrcid_t

*id);

errval_t rsrc_join(rsrcid_t id);

errval_t rsrc_phase(rsrcid_t id, uint32_t phase);

Manifest Example

Phases are implicitly numbered from 0

Phase 0: Best-effort with priority 1

Phase 1: Hard real-time

 Worst-case execution time 20ms

 Period 160ms

 Deadline 160ms

Systems Group. D-INFK. ETH Zurich 27

static const char *my_manifest =

"B 1\n" // Normal phase

"H 20 160 160\n"; // Hard real-time phase

Thank you

Systems Group. D-INFK. ETH Zurich 29

Backup

Systems Group. D-INFK. ETH Zurich 31

