
Systems Group

Dept. Computer Science

ETH Zurich - Switzerland

Threads and

Scheduling

Simon Peter

Systems Group. D-INFK. ETH Zurich 2

Outline

Threads

 Concepts

 Usage/API

Scheduling

 Concepts

 Usage/API

(Italics describe things subject to change)

Threads

Systems Group. D-INFK. ETH Zurich 3

Thread concept

Classic

Unit of execution

Lowest schedulable entity

Preemptable

Affine to a core

Can block

Can be synchronized with

Barrelfish

Can invoke capabilities

Can send/receive messages

Systems Group. D-INFK. ETH Zurich 5

Core 1 Core nCore 0

How are threads scheduled?

Core 1 Core nCore 0

CPU Driver CPU Driver CPU Driver
Kernel/User

How are threads scheduled?

Core 1 Core nCore 0

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Dispatcher Dispatcher Dispatcher

Kernel/User

Dispatcher Dispatcher

How are threads scheduled?

Core 1 Core nCore 0

Domain 1

Domain 2

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Domain n
Dispatcher Dispatcher Dispatcher

Kernel/User

Dispatcher Dispatcher

How are threads scheduled?

Core 1 Core nCore 0

Domain 1

Domain 2

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Thread Thread

Thread Thread

Thread Thread Thread Thread

Thread

Domain n
Dispatcher Dispatcher Dispatcher

Thread Thread Thread Thread Thread

Kernel/User

Thread

Dispatcher Dispatcher

Thread Thread Thread Thread

How are threads scheduled?

Core 1 Core nCore 0

Domain 1

Domain 2

CPU Driver

Dispatcher

CPU Driver

Dispatcher

CPU Driver

Dispatcher

Thread Thread

Thread Thread

Thread Thread Thread Thread

Thread

Domain n
Dispatcher Dispatcher Dispatcher

Thread Thread Thread Thread Thread

Kernel/User

Thread

Dispatcher Dispatcher

Thread Thread Thread Thread

How are threads scheduled?

RBED Scheduler

Simple Round-

Robin Scheme

Thread support

Implemented in user-space

Provided by a threads package

Currently contained in libbarrelfish

 Public API in include/barrelfish/threads.h

 Provides POSIX-like behavior

Systems Group. D-INFK. ETH Zurich 12

Thread data types

struct thread *thread = thread_self();

 pthread_t equivalent, designates a thread

int (*thread_func_t)(void *data)

 Thread start routine

struct thread_mutex mutex = THREAD_MUTEX_INITIALIZER;

 Mutex (can be nested and tested)

struct thread_cond cond = THREAD_COND_INITIALIZER;

 Condition variable (signal and broadcast semantics)

struct thread_sem sem = THREAD_SEM_INITIALIZER;

 Semaphore (can be tested)

Systems Group. D-INFK. ETH Zurich 13

Thread creation

Create thread on local core

Thread stack caveats

Allocated at thread creation time

Don’t grow dynamically

Not protected against overflow

Systems Group. D-INFK. ETH Zurich 14

struct thread *thread_create_varstack(thread_func_t

start_func, void *arg, size_t stacksize);

struct thread *thread_create(thread_func_t start_func,

void *data);

Thread-local storage

One void * can be associated with each thread

 Bad composability, we know

Pthreads has thread local key-value store instead

Systems Group. D-INFK. ETH Zurich 15

void thread_set_tls(void *tls);

void *thread_get_tls(void);

Other useful thread operations

Return thread ID

Yield timeslice of this thread

Exit thread

Threads are only cleaned up when joined with

 Unless detached

Systems Group. D-INFK. ETH Zurich 16

errval_t thread_join(struct thread *thread, int *retval);

errval_t thread_detach(struct thread *thread);

void thread_yield(void);

void thread_exit(void);

struct thread *thread_self(void);

What we don’t have but POSIX does

Forking-related operations (pthread_atfork())

Attributes

 Scheduling policy set via scheduler API

 No guarded stacks

 No contention scopes

Barriers

 Done elsewhere

Cancelable threads

Timed synchronization primitives

Concurrency levels

Thread signals

Read/write locks

Systems Group. D-INFK. ETH Zurich 17

Multi-core Threading

“Span” your domain to other cores:

Asynchronous operation

Systems Group. D-INFK. ETH Zurich 18

errval_t domain_new_dispatcher(uint8_t core_id,

domain_spanned_callback_t callback, void *callback_arg);

static void domain_spanned(void *arg, errval_t err);

Domain

Core 0

Dispatcher

Core 1

Multi-core Threading

“Span” your domain to other cores:

Asynchronous operation

Systems Group. D-INFK. ETH Zurich 19

errval_t domain_new_dispatcher(uint8_t core_id,

domain_spanned_callback_t callback, void *callback_arg);

static void domain_spanned(void *arg, errval_t err);

Domain

Core 0

Dispatcher

Core 1

Dispatcher

domain_new_dispatcher(1, …)

Multi-core Threading

“Span” your domain to other cores:

Asynchronous operation

Systems Group. D-INFK. ETH Zurich 20

errval_t domain_new_dispatcher(uint8_t core_id,

domain_spanned_callback_t callback, void *callback_arg);

static void domain_spanned(void *arg, errval_t err);

Domain

Core 0

Dispatcher

Core 1

Dispatcher

Spanning a domain

New dispatcher has its own resources

 Monitor, memory server bindings

 Slabs, slots and heaps

 Page tables

 Capabilities

 All other bindings

All other resources are shared

 Virtual address space

 Locks

 Semaphores

 Condition variables

 …

Systems Group. D-INFK. ETH Zurich 21

Multi-core threading

Start thread on different core:

Move thread to different core:

 Currently only supports self-migration

 Doesn’t migrate open connections!

Systems Group. D-INFK. ETH Zurich 22

errval_t domain_thread_create_on(coreid_t core_id,

thread_func_t start_func, void *arg);

errval_t domain_thread_move_to(struct thread *thread,

coreid_t core_id);

Scheduling

Systems Group. D-INFK. ETH Zurich 23

CPU Driver Scheduler

Rate-Based Earliest Deadline First (RBED)

 Algorithm by Scott Brandt, UC Santa Cruz

 Deterministic, versatile, unified model

Best-effort tasks with priorities

 UNIX-style I/O priority boost

Rate-based tasks

 Worst-case execution time, deadline, period

Soft-realtime

 Upcall when deadline missed

Hard-realtime

 Admission control

Systems Group. D-INFK. ETH Zurich 24

Scheduling at multiple timescales

Long-term

 Scheduler manifests

 Divide app into phases with RBED parameters

Mid-term

 Phase changes

Short-term

 Scheduled by RBED

Systems Group. D-INFK. ETH Zurich 25

Scheduler API

Public API in include/barrelfish/resource_ctrl.h

Submit scheduling manifest on local dispatcher

Join the manifest from other dispatchers

Change resource phase from any joined dispatcher

Systems Group. D-INFK. ETH Zurich 26

errval_t rsrc_manifest(const char *manifest, rsrcid_t

*id);

errval_t rsrc_join(rsrcid_t id);

errval_t rsrc_phase(rsrcid_t id, uint32_t phase);

Manifest Example

Phases are implicitly numbered from 0

Phase 0: Best-effort with priority 1

Phase 1: Hard real-time

 Worst-case execution time 20ms

 Period 160ms

 Deadline 160ms

Systems Group. D-INFK. ETH Zurich 27

static const char *my_manifest =

"B 1\n" // Normal phase

"H 20 160 160\n"; // Hard real-time phase

Thank you

Systems Group. D-INFK. ETH Zurich 29

Backup

Systems Group. D-INFK. ETH Zurich 31

