
Tracing & Visualization in
Barrelfish

Rebecca Isaacs

Barcelona Barrelfish Workshop

September 2010

Trace System Design

• See the behaviour of the live system
– Scheduling, concurrency, messages

– Domain-specific events

• Low overhead
– Try not to perturb the system being traced

• Low level
– Can trace anything from anywhere

• Minimal dependencies on other components

• Does not rely on IDC, scheduling, memory allocation

– Support tracing of system start-up

Overview

• Use tracing for:
– Demos

– Performance and concurrency debugging
• How does your new feature work?

• Does it mess up something else?

• Do not use tracing for:
– Functional debugging

• This talk
– Quick run-through of the design and implementation

– Hopefully persuade you that it’s worth using!

Summary

• Tracing (lib/trace)
– Instrumented applications write events to the trace

buffer using trace_event(…)

– One buffer per core

– Turned on and off dynamically

• Visualization (Aquarium)
– GUI that shows an event timeline per core

• And messages sent between cores

– Runs on Windows only
• Code was reused from various older research projects

• 64-bit timestamp + 64-bit body
– The body can be “raw” or encode the source of the event (the

subsystem), the event type and an argument
– Constants for trace subsystems and events are defined in

include/trace/trace.h

• Example:
TRACE_SUBSYS_MEMSERV = 0xA000

TRACE_EVENT_ALLOC = 0x0001

memserv.c/mem_allocate_handler() calls
 trace_event(TRACE_SUBSYS_MEMSERV,TRACE_EVENT_ALLOC,bits);

If bits=17, then the event posted is 0xA000000100000011

Events

Buffers

• Trace buffers contain an array of events, plus
control fields

– One per core, initialized when the core is booted

• Buffers are fixed size

– Tracing will stop when the buffer fills up, or when
the specified trace duration is exceeded

Data structures

• Master data structure for control

– Shared, largely read-only

• Each core’s trace buffer has private head and
tail pointers

– Atomic updates to write events into the buffer

• Implementation is architecture specific

– On x86_64 the virtual address of the core-local
buffer is computed from the core id

Control

• Tracing is turned on and off globally via trigger
events
– On x86, the flag master->running is set or unset

• Specify the trigger events by calling
trace_control(START_TRIGGER_EVENT,

 STOP_TRIGGER_EVENT,

 duration);

– Trigger events can be any event type

Producing a trace

1. Clear the buffers from the previous session
 trace_reset_all();

2. Specify start and stop events and duration
 trace_control(START_TRIGGER, STOP_TRIGGER,

 duration);

3. Somebody issues the start event
 trace_event(START_TRIGGER);

4. Do work… logging happens…
5. Somebody issues the stop event

 trace_event(STOP_TRIGGER);

6. Dump the trace
 trace_dump(…);

• Special events record the list of current DCBs
– Top bit set in timestamp means rundown event

• Used to parse context switch events
• Implemented (for x86 only) in the kernel function
trace_snapshot()

• Example:
DCB 0 ffffff0000e06000 mem_serv

DCB 0 ffffff0000e06200 monitor

0 27132 ffffcccc00e06000

0 31058 ffffcccc00e06200

…to mem_serv

…to monitor context switch…

DCB Rundown

Optimization: global coordination

• On x86_64, notifications are sent on the start
and stop trigger events

• IPI_TRACE_START (=63) is sent to all cores

– Each core calls trace_snapshot() to get its DCB
rundown

• IPI_TRACE_COMPLETE (=64) is sent to a
single core

– Enables a user-space domain to wait for trace
completion without polling the master

Miscellaneous

• Tracing is not enabled by default
– Turn on in Config.hs

• Portability requirements:
– Core-local atomic update (e.g. CAS, cli/sti) and timestamp

functions
– Some way to share the master across all cores

• Limitations:
– No security

• Anyone can read or write the trace buffer

– No protection
• Anyone can corrupt the trace buffer

– Fixed size events and fixed size buffers constrain expressiveness

bfscope

• Listens on TCP port 666 for “trace” commands

– Sets up a tracing session with default trigger
events

– Waits for the trace complete notification

– Returns the formatted events in the buffers

• Demo tool for x86_64

– Now defunct?

Aquarium

• Can run “live” as a client of bfscope

• Or display previously saved trace files

Example: 16 core spantest

Zoom in, use tooltips

Zoom in to diagnose

To do

• Support a circular trace buffer

• Filter with an event/subsystem mask

– Currently tracing is either on or off, which can lead
to many extraneous events

• Rewrite of Aquarium

Further reading: K42 tracing

