Tracing & Visualization in
Barrelfish

Rebecca Isaacs
Barcelona Barrelfish Workshop
September 2010

Trace System Design

* See the behaviour of the live system
— Scheduling, concurrency, messages
— Domain-specific events
* Low overhead
— Try not to perturb the system being traced

e Low level

— Can trace anything from anywhere
* Minimal dependencies on other components
* Does not rely on IDC, scheduling, memory allocation

— Support tracing of system start-up

Overview

* Use tracing for:
— Demos

— Performance and concurrency debugging

 How does your new feature work?
* Does it mess up something else?

* Do not use tracing for:
— Functional debugging

 This talk

— Quick run-through of the design and implementation
— Hopefully persuade you that it’s worth using!

Summary

* Tracing (lib/trace)

— Instrumented applications write events to the trace
buffer using trace event (...)

— One buffer per core
— Turned on and off dynamically
* Visualization (Aquarium)
— GUI that shows an event timeline per core
* And messages sent between cores

— Runs on Windows only
* Code was reused from various older research projects

Events

* 64-bit timestamp + 64-bit body

— The body can be “raw” or encode the source of the event (the
subsystem), the event type and an argument

— Constants for trace subsystems and events are defined in
include/trace/trace.h

e Example:

TRACE SUBSYS MEMSERV = 0xA000
TRACE EVENT ALLOC = 0x0001

memserv.c/mem_allocate_handler() calls
trace event (TRACE SUBSYS MEMSERV,TRACE EVENT ALLOC,bits);

If bits=17, then the event posted is 0xA000000100000011

Buffers

* Trace buffers contain an array of events, plus
control fields

— One per core, initialized when the core is booted

e Buffers are fixed size

— Tracing will stop when the buffer fills up, or when
the specified trace duration is exceeded

Data structures

e Master data structure for control
— Shared, largely read-only

e Each core’s trace buffer has private head and
tail pointers

— Atomic updates to write events into the buffer

* Implementation is architecture specific

— On x86_64 the virtual address of the core-local
buffer is computed from the core id

Control

* Tracing is turned on and off globally via trigger
events
— On x86, the flagmaster->runningis set or unset

* Specify the trigger events by calling
trace control (START TRIGGER EVENT,

STOP_TRIGGER_EVENT,
duration) ;

— Trigger events can be any event type

d

Producing a trace

Clear the buffers from the previous session
trace reset all();

Specify start and stop events and duration
trace control (START TRIGGER, STOP TRIGGER,
duration) ;

Somebody issues the start event
trace event (START TRIGGER) ;

Do work... logging happens...

Somebody issues the stop event
trace event (STOP TRIGGER);

Dump the trace
trace dump(..);

DCB Rundown

e Special events record the list of current DCBs
— Top bit set in timestamp means rundown event

* Used to parse context switch events

* Implemented (for x86 only) in the kernel function
trace snapshot ()

 Example:
DCB 0 ffffff0000€06000 mem serv
DCB 0 ffffff0000e06200 monitor

0O 27132 ffffccccOOeO6000-==::ﬁ }
..o mem_serv
0O 31058 ffffcceccO0e0620

[Context svﬁ \[...to monitor }

Optimization: global coordination

* On x86_64, notifications are sent on the start
and stop trigger events

* TPI TRACE START (=63)is sent to all cores

— Each core calls trace_snapshot() to get its DCB
rundown

* IPI TRACE COMPLETE (=64)is sentto a
single core

— Enables a user-space domain to wait for trace
completion without polling the master

Miscellaneous

* Tracing is not enabled by default
— Turn on in Config.hs

* Portability requirements:

— Core-local atomic update (e.g. CAS, cli/sti) and timestamp
functions

— Some way to share the master across all cores
* Limitations:
— No security
* Anyone can read or write the trace buffer

— No protection
e Anyone can corrupt the trace buffer

— Fixed size events and fixed size buffers constrain expressiveness

bfscope

* Listens on TCP port 666 for “trace” commands

— Sets up a tracing session with default trigger
events

— Waits for the trace complete notification
— Returns the formatted events in the buffers

 Demo tool for x86_64
— Now defunct?

Aquarium

* Can run “live” as a client of bfscope
* Or display previously saved trace files

| —— e

il Connect Cores Events

.:I I‘ "

MWWW

I
1
|;F.I

(I

Example: 16 core spantest

Cptions View

10,000,000

.___mm

m ’I":H":?'""‘:.m 5]“
|‘|H v |.'| =

lﬂ c

I I" "I'Ih
T

II!ITH I|| L] 1! lll 'r
'H” | I" N h”'\' T

Single Tr. 0]
50,0000
-Am |-\|[‘
1!

I

Zoom in, use tooltips

% BarrelfishDemo: C\Users\risaacs\barrelfish\barrelfish.clean\tools\demo\logs\span15.3.log = | B i
File Connect Cores Events Options View |Rur1|5ir'|g|e TracelE:u:um OutE :[
£,000,000 7000000 8000000 Q000000 10000000 11000000 12000000 13,000,000 14000000 15000000 16,000,000 17000000 18000000 19000000 20000000 3
| | I] |] | | | l | | | |
13 -] II : =] I : 1 I 1 I | I I I [I I
I I
14 W "] g i
I []) | — [I I I I
I] A, |, . L 'II_'I I M M I I | I) ./ I
i
AL [, e S - T
| I 1 | I | Polling from 12,999,874 13 446,699 []
i J S, I v Y] ., i - | ! [

I | 1 E— I |- | =] | I

i) m gmmEE|| 0 pwwam, EEm g SYER, ENA ERGE. N EEE i T i T . I

= T e T 1 | i | |

e e N [=

P=i==

/oom in to diagnose

-
BarrelfishDemo: Ch\Users\nsaacs\barrelfish\barrelfizh.clean\tools\demaohlogsispanl3.3.lo E@ﬂ
Gs\sp g
— — S
File Connect Cores Events Options View Run[SingIETracelZoom OUtE :l
4 n 3

Du?s,aﬁn,acila_.g ac,.U{J?Q,GU{J,oull:lg_lou_0-3?9.200.00? 9,3ou,uoltLg_.4Dn::-,o[Jt|1 Q,SDD,UCilEI_.E DC_.UO?Q,?UCI,CIU?Q_SOD_D-Clll:LQ.QDO.ODIi’ID,IZIOIZI,IZIDIIID_.‘_DD_.DDIF 0,200,00 iIU_.ECIU_.UOFO,dUO,CIUFD_500_IZIOI|IO.5[

e
——————r————————
| _ ==
e
:;|*_-_-‘E||1||E|f I |l1

To do

e Support a circular trace buffer
* Filter with an event/subsystem mask

— Currently tracing is either on or off, which can lead
to many extraneous events

* Rewrite of Aquarium

Further reading: K42 tracing

