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Why?

e Apps beginning to compose parallel
libraries, hierarchically

e BB calls OpenMP calls pthreads, etc.

e Apps running multiple, competing
parallel tasks at the same time

e Stock OS scheduler is task ambivalent

e Resources go equally to threads w/o
regard for higher-level goals



Outline

e Semantics

e Implementation

e Extensions
e Resource Kind definitions
e Policy DSL

e Preliminary Results
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amount a of

requlre (resource (a)) {
resource

} e Limit: May use no more
than amount a of
resource
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resources are available
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J

e (until doing their
own require)
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Semantics

{ e Threads release
resources when
blocking

require (resource (a))
block () ;

J

e On unblocking, must
continue waiting until
released resources can
be reacquired
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Semantics

® resource:

require (CpuUtil (0,50%)) { Eithdera basic Resource
Kin

} e |ater: How these are
defined

require (cores (3)) { e Ora Policy

\ e A setof basicresources

e Based on availability

e Later: ADSL for defining
these
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Options

From when is the require enforced?

e Now? Before/atter spawning a thread?

Who may share the allocation?

e Noone? Only child threads? Anyone?

When shall child threads make sub-allocations?
¢ On thread start? When calling spawn?

When may child threads make sub-allocations?

e Anytime? Only when parent blocks?
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Who

require (r (Private,a)) { e Nosub-allocations are
permitted. (But nested

requires can take

} -
from any remaining
non-private allocation.)

require (r (Shared, a)) { e Limitsthread to
amount a of resource

} r, but provides no
guarantee
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require (r (ForChild, a) )

J
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Child thread allocations

o Blocks until parent
thread blocks, then
attempts executing

} require.

require (r (OnBlock,a) ) {
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Options

e These four kinds of options are
orthogonal and can be combined

e c.g.:ForChild, OnSpawn

e Execute the require when a child
thread itself calls spawn
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Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

e Keep a tree of allocations

e Nodes keep some reference counts, e.g.:
e Number of threads sharing an allocation
e Number of those that are running

e Stack entries point to nodes in the tree

Tuesday, October 25, 2011

17



Implementation Sketch



Implementation Sketch

e Need to perform operations on stacks,
trees when threads:



Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit



Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit

e 50, use dynamic linker to override:



Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit

e 50, use dynamic linker to override:

pthread create, pthread exit,
pthread cond wait, etc.




Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit
e 50, use dynamic linker to override:

e pthread create, pthread exit,
pthread cond wait, etc.

e sched vyield, etc.



Implementation Sketch

e ( front-end
e OCamlClILlibrary

e Replaces require with calls to runtime
library

e RuntimeinC
e 8calls, afew data types

e Hopefully easy to integrate into other
languages
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Example

£() A
require (r (b)) {
}
}
main ( {«
require (r(a)) {
spawn f
require(r(c)){...}
}

J
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Example

£() Ao

require (r (b)) {

r-Allocation Tree

. « T1 r-Stack

J

G

§

> d [«

- d

C

7

O T2r-Stack

J

LN

N

main () {

require(r(a)) {
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Example

r-Allocation Tree

£() Gl-a
require(r (b))
« o o « T1 r-Stack T,\O T2 r-Stack
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}
. In%
malin () {
require(r(a)) {
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e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

e Operations (all optional):
e (Getcurrent usage
e (Calculate usage rate
e OS function for throttling usage

e OS function for pinning to device
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Example (CpuUtil)

e Operations:
o Getter: CPU time on behalf of thread
e Calculator: (getter 2 - getter 1)/ Time

e Throttler: None

e Pinner:Linux cpuset cgroup
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Resource Kinds

e Now we can write:
® require (CpuUtil (core, util))

o All platform specific stuff is in the
Resource Kind definitions

e Hopefully this makes porting easy
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Policies

e Query availability, require a set of resources
e e.g.ncores,don’'t care which
e Allocated and released all-together

e Defined by DSL embedded in C

e No writing globals, or calling arbitrary
functions

e Butafew special functions are made
available
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Policy DSL Example

policy cores(int n) {
int 1, found = O0;
int d = num devs (“CpuUtil”);

for (r = 0 ... d) {
1f (found == n) break;
if (available (“CpuUutil”, i) == 1.0)
require (“CpuUtil”, i).value = 1.0;
found++;

J
J

if (found < n) return PolicyFailure;
return PolicySuccess;

{
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Preliminary Results

e QR decomposition of big matrices:
e Intel TBB-> Intel MKL-> GNU OpenMP
e “deltaX” matrix on g4-core Intel box

e Usingonly the “cores” policy
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Preliminary Results

e QR decomposition of big matrices:
e Intel TBB-> Intel MKL-> GNU OpenMP
e “deltaX” matrix on g4-core Intel box

e Usingonly the “cores” policy

L2 Miss | Context CPU .
Method Rate Switches [Migration Changes | Time(s)
Default 3.2% 2.6X1075 | 4891 O 06.8
Lithe 0 A Custom
[Pan, et al. PLDI"10] 23/) 46X1O 4 27 TBB’ OI\/\P 897
Us 3.0% |4.0x10"4 41 4 35.9
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Continuing Work

Try out on more apps

Write a library of useful policies

Think of a clever name

more resources => rerun policy function?
Port to Barrelfish

e Seek cooperation between OS and runtime

e Single machine -> Cluster?
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