
Fine-grained, language-level, resource
management and measurement

Zachary Anderson
Systems Group, ETH Zürich

Barrelfish Workshop
October 20th, 2011

1Tuesday, October 25, 2011

Goal

2Tuesday, October 25, 2011

Goal
• A “report” statement

that profiles all usage
of a particular resource
in a block of code

report(resource) {
 ...
}

2Tuesday, October 25, 2011

Goal
• A “report” statement

that profiles all usage
of a particular resource
in a block of code

report(resource) {
 ...
}

2Tuesday, October 25, 2011

Goal
• A “report” statement

that profiles all usage
of a particular resource
in a block of code

• A “require” statement
that provides
guarantees and limits
for usage of a resource
in a block of code

report(resource) {
 ...
}

require(resource(a)) {
 ...
}

2Tuesday, October 25, 2011

Goal
• A “report” statement

that profiles all usage
of a particular resource
in a block of code

• A “require” statement
that provides
guarantees and limits
for usage of a resource
in a block of code

report(resource) {
 ...
}

require(resource(a)) {
 ...
}

resource = CPU util, IO bandwidth, etc.
2Tuesday, October 25, 2011

Goal
• A “report” statement

that profiles all usage
of a particular resource
in a block of code

• A “require” statement
that provides
guarantees and limits
for usage of a resource
in a block of code

report(resource) {
 ...
}

require(resource(a)) {
 ...
}

resource = CPU util, IO bandwidth, etc.
3Tuesday, October 25, 2011

Why?

4Tuesday, October 25, 2011

Why?
• Apps beginning to compose parallel

libraries, hierarchically

4Tuesday, October 25, 2011

Why?
• Apps beginning to compose parallel

libraries, hierarchically

• TBB calls OpenMP calls pthreads, etc.

4Tuesday, October 25, 2011

Why?
• Apps beginning to compose parallel

libraries, hierarchically

• TBB calls OpenMP calls pthreads, etc.

• Apps running multiple, competing
parallel tasks at the same time

4Tuesday, October 25, 2011

Why?
• Apps beginning to compose parallel

libraries, hierarchically

• TBB calls OpenMP calls pthreads, etc.

• Apps running multiple, competing
parallel tasks at the same time

• Stock OS scheduler is task ambivalent

4Tuesday, October 25, 2011

Why?
• Apps beginning to compose parallel

libraries, hierarchically

• TBB calls OpenMP calls pthreads, etc.

• Apps running multiple, competing
parallel tasks at the same time

• Stock OS scheduler is task ambivalent

• Resources go equally to threads w/o
regard for higher-level goals

4Tuesday, October 25, 2011

Outline

• Semantics

• Implementation

• Extensions

• Resource Kind definitions

• Policy DSL

• Preliminary Results

5Tuesday, October 25, 2011

Semantics

require(resource(a)) {
 ...
}

6Tuesday, October 25, 2011

Semantics

• Guarantee: Use of
amount a of
resourcerequire(resource(a)) {

 ...
}

6Tuesday, October 25, 2011

Semantics

• Guarantee: Use of
amount a of
resource

• Limit: May use no more
than amount a of
resource

require(resource(a)) {
 ...
}

6Tuesday, October 25, 2011

Semantics

• Guarantee: Use of
amount a of
resource

• Limit: May use no more
than amount a of
resource

• Threads block until
resources are available

require(resource(a)) {
 ...
}

6Tuesday, October 25, 2011

Semantics

require(resource(a)) {
 ...
 require(resource(b)) {
 ...
 }
}

7Tuesday, October 25, 2011

Semantics

• Nested allocations only
out of current
allocation

require(resource(a)) {
 ...
 require(resource(b)) {
 ...
 }
}

7Tuesday, October 25, 2011

Semantics

• Nested allocations only
out of current
allocation

• i.e. b <= a

require(resource(a)) {
 ...
 require(resource(b)) {
 ...
 }
}

7Tuesday, October 25, 2011

Semantics

require(resource(a)) {
 spawn f;
}

8Tuesday, October 25, 2011

Semantics

• All spawned threads
equally share this
allocation with parent

require(resource(a)) {
 spawn f;
}

8Tuesday, October 25, 2011

Semantics

• All spawned threads
equally share this
allocation with parent

• (until doing their
own require)

require(resource(a)) {
 spawn f;
}

8Tuesday, October 25, 2011

Semantics

• All spawned threads
equally share this
allocation with parent

• (until doing their
own require)

• More on this later

require(resource(a)) {
 spawn f;
}

8Tuesday, October 25, 2011

Semantics

require(resource(a)) {
 block();
}

9Tuesday, October 25, 2011

Semantics

• Threads release
resources when
blocking

require(resource(a)) {
 block();
}

9Tuesday, October 25, 2011

Semantics

• Threads release
resources when
blocking

• On unblocking, must
continue waiting until
released resources can
be reacquired

require(resource(a)) {
 block();
}

9Tuesday, October 25, 2011

Semantics

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

• Either a basic Resource
Kind

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

• Either a basic Resource
Kind

• Later: How these are
defined

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

• Either a basic Resource
Kind

• Later: How these are
defined

• Or a Policy

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

• Either a basic Resource
Kind

• Later: How these are
defined

• Or a Policy

• A set of basic resources

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

• Either a basic Resource
Kind

• Later: How these are
defined

• Or a Policy

• A set of basic resources

• Based on availability

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Semantics
• resource:

• Either a basic Resource
Kind

• Later: How these are
defined

• Or a Policy

• A set of basic resources

• Based on availability

• Later: A DSL for defining
these

require(CpuUtil(0,50%)) {
 ...
}

require(cores(3)) {
 ...
}

10Tuesday, October 25, 2011

Options

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

• Who may share the allocation?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

• Who may share the allocation?

• No one? Only child threads? Anyone?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

• Who may share the allocation?

• No one? Only child threads? Anyone?

• When shall child threads make sub-allocations?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

• Who may share the allocation?

• No one? Only child threads? Anyone?

• When shall child threads make sub-allocations?

• On thread start? When calling spawn?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

• Who may share the allocation?

• No one? Only child threads? Anyone?

• When shall child threads make sub-allocations?

• On thread start? When calling spawn?

• When may child threads make sub-allocations?

11Tuesday, October 25, 2011

Options
• From when is the require enforced?

• Now? Before/after spawning a thread?

• Who may share the allocation?

• No one? Only child threads? Anyone?

• When shall child threads make sub-allocations?

• On thread start? When calling spawn?

• When may child threads make sub-allocations?

• Anytime? Only when parent blocks?

11Tuesday, October 25, 2011

When

require(r(OnSpawn,a)) {
 ...
}

require(r(AferSpawn,a)){
 ...
}

12Tuesday, October 25, 2011

When

require(r(OnSpawn,a)) {
 ...
}

require(r(AferSpawn,a)){
 ...
}

12Tuesday, October 25, 2011

When

• Requirement enforced
immediately before
first call to spawn

require(r(OnSpawn,a)) {
 ...
}

require(r(AferSpawn,a)){
 ...
}

12Tuesday, October 25, 2011

When

• Requirement enforced
immediately before
first call to spawn

require(r(OnSpawn,a)) {
 ...
}

require(r(AferSpawn,a)){
 ...
}

12Tuesday, October 25, 2011

When

• Requirement enforced
immediately before
first call to spawn

• Requirement enforced
immediately after first
call to spawn

require(r(OnSpawn,a)) {
 ...
}

require(r(AferSpawn,a)){
 ...
}

12Tuesday, October 25, 2011

Who
require(r(Private,a)) {
 ...
}

require(r(Shared,a)) {
 ...
}

13Tuesday, October 25, 2011

Who
• No sub-allocations are

permitted. (But nested
requires can take
from any remaining
non-private allocation.)

require(r(Private,a)) {
 ...
}

require(r(Shared,a)) {
 ...
}

13Tuesday, October 25, 2011

Who
• No sub-allocations are

permitted. (But nested
requires can take
from any remaining
non-private allocation.)

require(r(Private,a)) {
 ...
}

require(r(Shared,a)) {
 ...
}

13Tuesday, October 25, 2011

Who
• No sub-allocations are

permitted. (But nested
requires can take
from any remaining
non-private allocation.)

• Limits thread to
amount a of resource
r, but provides no
guarantee

require(r(Private,a)) {
 ...
}

require(r(Shared,a)) {
 ...
}

13Tuesday, October 25, 2011

Child thread allocations

require(r(ForChild,a)) {
 ...
}

14Tuesday, October 25, 2011

Child thread allocations

• spawn’d child threads
execute effects of the
require statement
immediately after
starting

require(r(ForChild,a)) {
 ...
}

14Tuesday, October 25, 2011

Child thread allocations

require(r(OnBlock,a)) {
 ...
}

15Tuesday, October 25, 2011

Child thread allocations

• Blocks until parent
thread blocks, then
attempts executing
require.

require(r(OnBlock,a)) {
 ...
}

15Tuesday, October 25, 2011

Options

• These four kinds of options are
orthogonal and can be combined

• e.g.: ForChild, OnSpawn

• Execute the require when a child
thread itself calls spawn

16Tuesday, October 25, 2011

Implementation Sketch

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

• Globally:

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

• Globally:

• Keep a tree of allocations

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

• Globally:

• Keep a tree of allocations

• Nodes keep some reference counts, e.g.:

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

• Globally:

• Keep a tree of allocations

• Nodes keep some reference counts, e.g.:

• Number of threads sharing an allocation

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

• Globally:

• Keep a tree of allocations

• Nodes keep some reference counts, e.g.:

• Number of threads sharing an allocation

• Number of those that are running

17Tuesday, October 25, 2011

Implementation Sketch
• For each resource, each thread keeps:

• A stack mirroring the nesting of require
statements

• Globally:

• Keep a tree of allocations

• Nodes keep some reference counts, e.g.:

• Number of threads sharing an allocation

• Number of those that are running

• Stack entries point to nodes in the tree

17Tuesday, October 25, 2011

Implementation Sketch

18Tuesday, October 25, 2011

Implementation Sketch

• Need to perform operations on stacks,
trees when threads:

18Tuesday, October 25, 2011

Implementation Sketch

• Need to perform operations on stacks,
trees when threads:

• Start, require, block, and exit

18Tuesday, October 25, 2011

Implementation Sketch

• Need to perform operations on stacks,
trees when threads:

• Start, require, block, and exit

• So, use dynamic linker to override:

18Tuesday, October 25, 2011

Implementation Sketch

• Need to perform operations on stacks,
trees when threads:

• Start, require, block, and exit

• So, use dynamic linker to override:

• pthread_create, pthread_exit,
pthread_cond_wait, etc.

18Tuesday, October 25, 2011

Implementation Sketch

• Need to perform operations on stacks,
trees when threads:

• Start, require, block, and exit

• So, use dynamic linker to override:

• pthread_create, pthread_exit,
pthread_cond_wait, etc.

• sched_yield, etc.

18Tuesday, October 25, 2011

Implementation Sketch
• C front-end

• OCaml CIL library

• Replaces require with calls to runtime
library

• Runtime in C

• 8 calls, a few data types

• Hopefully easy to integrate into other
languages

19Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

r-Allocation Tree

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G
r-Allocation Tree

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G

a

r-Allocation Tree

- a

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G

a
T2 r-Stack

r-Allocation Tree

- a

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G

a
T2 r-Stack

b

r-Allocation Tree

- a

- b

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G

a
T2 r-Stack

b

r-Allocation Tree

- a

- b

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G

a
T2 r-Stack

c b

r-Allocation Tree

- a

- b
- c

20Tuesday, October 25, 2011

Example
f() {
 require(r(b)) {
 ...
 }
}

main() {
 require(r(a)) {
 spawn f;
 require(r(c)){...}
 }
}

T1 r-Stack

G

a
T2 r-Stack

b

r-Allocation Tree

- a

- b

20Tuesday, October 25, 2011

Resource Kinds

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

• Name, number of devices, names of devices,
per-device max allocation

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

• Name, number of devices, names of devices,
per-device max allocation

• Operations (all optional):

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

• Name, number of devices, names of devices,
per-device max allocation

• Operations (all optional):

• Get current usage

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

• Name, number of devices, names of devices,
per-device max allocation

• Operations (all optional):

• Get current usage

• Calculate usage rate

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

• Name, number of devices, names of devices,
per-device max allocation

• Operations (all optional):

• Get current usage

• Calculate usage rate

• OS function for throttling usage

21Tuesday, October 25, 2011

Resource Kinds
• Define a structure, register with API call:

• Name, number of devices, names of devices,
per-device max allocation

• Operations (all optional):

• Get current usage

• Calculate usage rate

• OS function for throttling usage

• OS function for pinning to device

21Tuesday, October 25, 2011

Example (CpuUtil)

22Tuesday, October 25, 2011

Example (CpuUtil)

• Name: CpuUtil

22Tuesday, October 25, 2011

Example (CpuUtil)

• Name: CpuUtil

• Number of Devices: NUM_CPUS

22Tuesday, October 25, 2011

Example (CpuUtil)

• Name: CpuUtil

• Number of Devices: NUM_CPUS

• Names of Devices: [0,...,n]

22Tuesday, October 25, 2011

Example (CpuUtil)

• Name: CpuUtil

• Number of Devices: NUM_CPUS

• Names of Devices: [0,...,n]

• Max Allocation: [1.0, ..., 1.0]

22Tuesday, October 25, 2011

Example (CpuUtil)

23Tuesday, October 25, 2011

Example (CpuUtil)

• Operations:

23Tuesday, October 25, 2011

Example (CpuUtil)

• Operations:

• Getter: CPU time on behalf of thread

23Tuesday, October 25, 2011

Example (CpuUtil)

• Operations:

• Getter: CPU time on behalf of thread

• Calculator: (getter_2 - getter_1) / Time

23Tuesday, October 25, 2011

Example (CpuUtil)

• Operations:

• Getter: CPU time on behalf of thread

• Calculator: (getter_2 - getter_1) / Time

• Throttler: None

23Tuesday, October 25, 2011

Example (CpuUtil)

• Operations:

• Getter: CPU time on behalf of thread

• Calculator: (getter_2 - getter_1) / Time

• Throttler: None

• Pinner: Linux cpuset cgroup

23Tuesday, October 25, 2011

Resource Kinds

24Tuesday, October 25, 2011

Resource Kinds

• Now we can write:

24Tuesday, October 25, 2011

Resource Kinds

• Now we can write:

•require(CpuUtil(core, util))

24Tuesday, October 25, 2011

Resource Kinds

• Now we can write:

•require(CpuUtil(core, util))

• All platform specific stuff is in the
Resource Kind definitions

24Tuesday, October 25, 2011

Resource Kinds

• Now we can write:

•require(CpuUtil(core, util))

• All platform specific stuff is in the
Resource Kind definitions

• Hopefully this makes porting easy

24Tuesday, October 25, 2011

Policies

25Tuesday, October 25, 2011

Policies
• Query availability, require a set of resources

25Tuesday, October 25, 2011

Policies
• Query availability, require a set of resources

• e.g. n cores, don’t care which

25Tuesday, October 25, 2011

Policies
• Query availability, require a set of resources

• e.g. n cores, don’t care which

• Allocated and released all-together

25Tuesday, October 25, 2011

Policies
• Query availability, require a set of resources

• e.g. n cores, don’t care which

• Allocated and released all-together

• Defined by DSL embedded in C

25Tuesday, October 25, 2011

Policies
• Query availability, require a set of resources

• e.g. n cores, don’t care which

• Allocated and released all-together

• Defined by DSL embedded in C

• No writing globals, or calling arbitrary
functions

25Tuesday, October 25, 2011

Policies
• Query availability, require a set of resources

• e.g. n cores, don’t care which

• Allocated and released all-together

• Defined by DSL embedded in C

• No writing globals, or calling arbitrary
functions

• But a few special functions are made
available

25Tuesday, October 25, 2011

Policy DSL Example
policy cores(int n) {
 int i, found = 0;
 int d = num_devs(“CpuUtil”);

 for (i = 0 ... d) {
 if (found == n) break;
 if (available(“CpuUtil”, i) == 1.0) {
 require(“CpuUtil”, i).value = 1.0;
 found++;
 }
 }
 if (found < n) return PolicyFailure;
 return PolicySuccess;
}

26Tuesday, October 25, 2011

Preliminary Results
• QR decomposition of big matrices:

• Intel TBB -> Intel MKL -> GNU OpenMP

• “deltaX” matrix on 4-core Intel box

• Using only the “cores” policy

27Tuesday, October 25, 2011

Preliminary Results
• QR decomposition of big matrices:

• Intel TBB -> Intel MKL -> GNU OpenMP

• “deltaX” matrix on 4-core Intel box

• Using only the “cores” policy

Method L2 Miss
Rate

Context
Switches

CPU
Migration Changes Time(s)

Default 3.2% 2.6x10^5 4891 0 96.8

Lithe
[Pan, et al. PLDI’10]

2.3% 4.6x10^4 27 Custom
TBB, OMP 89.7

Us 3.0% 4.0x10^4 41 4 85.9

27Tuesday, October 25, 2011

Continuing Work

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

• Write a library of useful policies

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

• Write a library of useful policies

• Think of a clever name

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

• Write a library of useful policies

• Think of a clever name

• more resources => rerun policy function?

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

• Write a library of useful policies

• Think of a clever name

• more resources => rerun policy function?

• Port to Barrelfish

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

• Write a library of useful policies

• Think of a clever name

• more resources => rerun policy function?

• Port to Barrelfish

• Seek cooperation between OS and runtime

28Tuesday, October 25, 2011

Continuing Work

• Try out on more apps

• Write a library of useful policies

• Think of a clever name

• more resources => rerun policy function?

• Port to Barrelfish

• Seek cooperation between OS and runtime

• Single machine -> Cluster?

28Tuesday, October 25, 2011

questions

29Tuesday, October 25, 2011

