Fine-grained, language-level, resource
management and measurement

Zachary Anderson
Systems Group, ETH Zurich

Barrelfish Workshop
October 20th, 2011

Tuesday, October 25, 2011

Goal

Tuesday, October 25, 2011

Goal

report (resource) { o A'report” statement
that profiles all usage
} of a particular resource

in a block of code

Tuesday, October 25, 2011

Goal

report (resource) { o A'report” statement
that profiles all usage
} of a particular resource

in a block of code

Tuesday, October 25, 2011

Goal

report (resource) { o A'report” statement
. that profiles all usage
} of a particular resource

in a block of code

requlre (resource(a)) { e A“require” statement
o that provides
) guarantees and limits
for usage of a resource
in a block of code

Tuesday, October 25, 2011

Goal

report (resource) { o A'report” statement
. that profiles all usage
} of a particular resource

in a block of code

requlre (resource(a)) { e A“require” statement
o that provides
) guarantees and limits
for usage of a resource
in a block of code

resource = CPU util, IO bandwidth, etc.

Tuesday, October 25, 2011

Goal

requlre (resource(a)) { e A“require” statement
o that provides
) guarantees and limits
for usage of a resource
in a block of code

resource = CPU util, IO bandwidth, etc.

Tuesday, October 25, 2011

Tuesday, October 25, 2011

Why

/

Why?

e Apps beginning to compose parallel
libraries, hierarchically

Tuesday, October 25, 2011

Why?

e Apps beginning to compose parallel
libraries, hierarchically

e BB calls OpenMP calls pthreads, etc.

Tuesday, October 25, 2011

Why?

e Apps beginning to compose parallel
libraries, hierarchically

e BB calls OpenMP calls pthreads, etc.

e Apps running multiple, competing
parallel tasks at the same time

Why?

e Apps beginning to compose parallel
libraries, hierarchically

e BB calls OpenMP calls pthreads, etc.

e Apps running multiple, competing
parallel tasks at the same time

e Stock OS scheduler is task ambivalent

Why?

e Apps beginning to compose parallel
libraries, hierarchically

e BB calls OpenMP calls pthreads, etc.

e Apps running multiple, competing
parallel tasks at the same time

e Stock OS scheduler is task ambivalent

e Resources go equally to threads w/o
regard for higher-level goals

Outline

e Semantics

e Implementation

e Extensions
e Resource Kind definitions
e Policy DSL

e Preliminary Results

Tuesday, October 25, 2011

Semantics

requlre (resource (a)) {

J

Tuesday, October 25, 2011

Semantics

e Guarantee: Use of
amount a of

requlre (resource (a)) {
resource

J

Tuesday, October 25, 2011

Semantics

e Guarantee: Use of
. amount a of
requlre (resource (a)) {
resource

} e Limit: May use no more
than amount a of

resource

Tuesday, October 25, 2011

Semantics

e Guarantee: Use of
amount a of

requlre (resource (a)) {
resource

} e Limit: May use no more
than amount a of
resource

e Threads block until
resources are available

Tuesday, October 25, 2011

Semantics

requlre (resource (a)) {

requlre (resource (b)) {

J
J

Tuesday, October 25, 2011

Semantics

require (resource (a)) {
e Nested allocations only

{ out of current

require (resource (b)) Jllocation

J

Tuesday, October 25, 2011

Semantics

require (resource (a)) {
e Nested allocations only

out of current

require (resource (b)) { . "

J e [.b <= a

Tuesday, October 25, 2011

Semantics

requlre (resource (a)) {
spawn f;

J

Tuesday, October 25, 2011

Semantics

o All spawned threads
equally share this
allocation with parent

requlre (resource (a)) {
spawn f;

J

Tuesday, October 25, 2011

Semantics

. o All spawned threads
require (resource(a)) | equally share this
spawn I;

allocation with parent

J

e (until doing their
own require)

Tuesday, October 25, 2011

Semantics

. o All spawned threads
require (resource(a)) | equally share this
spawn I;

allocation with parent

J

e (until doing their
own require)

e More on this later

Tuesday, October 25, 2011

Semantics

requlre (resource (a)) {
block();

J

Tuesday, October 25, 2011

Semantics

e Threads release
resources when
blocking

requlre (resource (a)) {
block();

J

Tuesday, October 25, 2011

Semantics

{ e Threads release
resources when
blocking

require (resource (a))
block () ;

J

e On unblocking, must
continue waiting until
released resources can
be reacquired

Tuesday, October 25, 2011

Semantics

requilre (CpuUt1l (0,50%)) {

J

requilre (cores (3))

J

Tuesday, October 25, 2011

10

Semantics

® resource:

requilre (CpuUt1l (0,50%)) {

J

requilre (cores (3))

J

Tuesday, October 25, 2011

10

Semantics

require (CpuUtil (0, 50%))

J

requilre (cores (3))

J

Tuesday, October 25, 2011

® resource:

{

e Fither a basic Resource
Kind

10

Semantics

require (CpuUtil (0, 50%))

J

requilre (cores (3))

J

Tuesday, October 25, 2011

® resource:

{

e Fither a basic Resource
Kind

e |ater: How these are
defined

10

Semantics

require (CpuUtil (0, 50%))

J

requilre (cores (3))

J

Tuesday, October 25, 2011

® resource:

{

e Fither a basic Resource
Kind

e |ater: How these are
defined

e Ora Policy

10

Semantics

® resource:

reguire (CpuUtil (0,50%)) { < Eithera basicResource

Kind
} e [ater: How these are
defined
require (cores (3)) { e Ora Policy

e A setof basicresources

J

Tuesday, October 25, 2011

10

Semantics

® resource:

reguire (CpuUtil (0,50%)) { < Eithera basicResource

Kind
} e |ater: How these are
defined
require (cores (3)) { e Ora Policy
\ e A setof basicresources

e Based on availability

Tuesday, October 25, 2011 10

Semantics

® resource:

require (CpuUtil (0,50%)) { Eithdera basic Resource
Kin

} e |ater: How these are
defined

require (cores (3)) { e Ora Policy

\ e A setof basicresources

e Based on availability

e Later: ADSL for defining
these

Tuesday, October 25, 2011

10

Tuesday, October 25, 2011

Options

11

Options

e From when is the require enforced?

Tuesday, October 25, 2011

11

Options

e From when is the require enforced?

e Now? Before/atter spawning a thread?

Tuesday, October 25, 2011

11

Options

e From when is the require enforced?
e Now? Before/atter spawning a thread?

e Who may share the allocation?

Tuesday, October 25, 2011

11

Options

e From when is the require enforced?
e Now? Before/atter spawning a thread?
e Who may share the allocation?

e Noone? Only child threads? Anyone?

Tuesday, October 25, 2011

11

Options

e From when is the require enforced?

e Now? Before/atter spawning a thread?
e Who may share the allocation?

e Noone? Only child threads? Anyone?

e \When shall child threads make sub-allocations?

Tuesday, October 25, 2011

11

Options

e From when is the require enforced?
e Now? Before/atter spawning a thread?
e Who may share the allocation?
e Noone? Only child threads? Anyone?
e When shall child threads make sub-allocations?

e Onthread start? When calling spawn?

Tuesday, October 25, 2011

11

Tuesday, October 25, 2011

Options

From when is the require enforced?

e Now? Before/atter spawning a thread?

Who may share the allocation?

e Noone? Only child threads? Anyone?

When shall child threads make sub-allocations?
¢ On thread start? When calling spawn?

When may child threads make sub-allocations?

11

Tuesday, October 25, 2011

Options

From when is the require enforced?

e Now? Before/atter spawning a thread?

Who may share the allocation?

e Noone? Only child threads? Anyone?

When shall child threads make sub-allocations?
¢ On thread start? When calling spawn?

When may child threads make sub-allocations?

e Anytime? Only when parent blocks?

11

When

require (r (OnSpawn, a)) {

J

require (r (AferSpawn, a)) {

J

Tuesday, October 25, 2011

12

When

require (r (OnSpawn, a)) {

J

require (r (AferSpawn, a)) {

J

Tuesday, October 25, 2011

12

When

require (r (OnSpawn, a)) {

J

require (r (AferSpawn, a)) {

J

Tuesday, October 25, 2011

e Requirement enforced
immediately before
first call to spawn

12

When

require (r (OnSpawn, a)) {

J

require (r (AferSpawn, a)) {

J

Tuesday, October 25, 2011

e Requirement enforced
immediately before
first call to spawn

12

When

require (r (OnSpawn, a)) {

J

require (r (AferSpawn, a)) {

J

Tuesday, October 25, 2011

e Requirement enforced
immediately before
first call to spawn

e Requirement enforced
immediately after first
call to spawn

12

Who

require (r (Private,a)) {

J

requlre (r (Shared,a))

J

Tuesday, October 25, 2011

13

Who

{ e Nosub-allocations are
permitted. (But nested
requires can take

} -
from any remaining
non-private allocation.)

require (r (Private, a))

requlre (r (Shared,a))

J

Tuesday, October 25, 2011

Who

{ e Nosub-allocations are
permitted. (But nested
requires can take

} -
from any remaining
non-private allocation.)

require (r (Private, a))

requlre (r (Shared,a))

J

Tuesday, October 25, 2011

Who

require (r (Private,a)) { e Nosub-allocations are
permitted. (But nested

requires can take

} -
from any remaining
non-private allocation.)

require (r (Shared, a)) { e Limitsthread to
amount a of resource

} r, but provides no
guarantee

Tuesday, October 25, 2011

Child thread allocations

requilre (r (ForChild,a)) {

J

Child thread allocations

require (r (ForChild, a))

J

Tuesday, October 25, 2011

{

e spawn'd child threads
execute effects of the
require statement
immediately after
starting

14

Child thread allocations

require (r (OnBlock,a)) {

J

Child thread allocations

o Blocks until parent
thread blocks, then
attempts executing

} require.

require (r (OnBlock,a)) {

Tuesday, October 25, 2011

15

Options

e These four kinds of options are
orthogonal and can be combined

e c.g.:ForChild, OnSpawn

e Execute the require when a child
thread itself calls spawn

Tuesday, October 25, 2011

Implementation Sketch

Implementation Sketch

e Foreach resource, each thread keeps:

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

Tuesday, October 25, 2011

17

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

Tuesday, October 25, 2011

17

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

e Keep a tree of allocations

Tuesday, October 25, 2011

17

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

e Keep a tree of allocations

e Nodes keep some reference counts, e.g.:

Tuesday, October 25, 2011

17

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

e Keep a tree of allocations

e Nodes keep some reference counts, e.g.:

e Number of threads sharing an allocation

Tuesday, October 25, 2011

17

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

e Keep a tree of allocations

e Nodes keep some reference counts, e.g.:
e Number of threads sharing an allocation

e Number of those that are running

Tuesday, October 25, 2011

17

Implementation Sketch

e Foreach resource, each thread keeps:

e A stack mirroring the nesting of require
statements

o Globally:

e Keep a tree of allocations

e Nodes keep some reference counts, e.g.:
e Number of threads sharing an allocation
e Number of those that are running

e Stack entries point to nodes in the tree

Tuesday, October 25, 2011

17

Implementation Sketch

Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit

Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit

e 50, use dynamic linker to override:

Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit

e 50, use dynamic linker to override:

pthread create, pthread exit,
pthread cond wait, etc.

Implementation Sketch

e Need to perform operations on stacks,
trees when threads:

e Start, require, block, and exit
e 50, use dynamic linker to override:

e pthread create, pthread exit,
pthread cond wait, etc.

e sched vyield, etc.

Implementation Sketch

e (front-end
e OCamlClILlibrary

e Replaces require with calls to runtime
library

e RuntimeinC
e 8calls, afew data types

e Hopefully easy to integrate into other
languages

Tuesday, October 25, 2011

19

Example

£() A
require (r (b)) {
}
}
main ({«
require (r(a)) {
spawn f
require(r(c)){...}
}

J

Tuesday, October 25, 2011

r-Allocation Tree

20

Example

r-Allocation Tree

£() { G

require (r (b)) {

T1 r-Stack
}
}
main ({«
require(r(a)) {
spawn f
require(r(c)){...}
}

J

Tuesday, October 25, 2011

Example

r-Allocation Tree

£() | Gl- 5
require (r (b)) {
T1 r-Stack T
} > d
}

main () {
require (r(a)) {«
spawn I;
require(r(c)){...}
}
}

Tuesday, October 25, 2011

Example

r-Allocation Tree

£() { < Gl- 3

require (r (b)) { ﬁr

°c o T1 r-Stack
} > d |«

T2 r-Stack

J

main () {
require(r(a)) {
spawn f; «
require(r(c)){...}
}
}

Tuesday, October 25, 2011

Example

r-Allocation Tree

£() | Gl- 3
require (r (b)) { <=

c o o T1 r-Stack T/\O T2 r-Stack
} > d [«

}
. 4
malin () {
require(r(a)) {
spawn f; ==
require(r(c)){...}
}
}

Tuesday, October 25, 2011

Example

r-Allocation Tree

£() Gl-a
require(r (b))
« o o « T1 r-Stack T,\O T2 r-Stack
} > d [«

}
. In%
malin () {
require(r(a)) {
spawn f; ==
require(r(c)){...}
}
}

Tuesday, October 25, 2011

Example

£() Ao

require (r (b)) {

r-Allocation Tree

. « T1 r-Stack

J

G

§

> d [«

- d

C

7

O T2r-Stack

J

LN

N

main () {

require(r(a)) {
spawn f;
require(r(c)){... }«
}
}

Tuesday, October 25, 2011

b

Y

Example

r-Allocation Tree

£() Gl-a
require(r (b))
« o o « T1 r-Stack T,\O T2 r-Stack
} d <

}
. In%
malin () {
require(r(a)) {
spawn I;
require(r(c)){...}
} <

J

Tuesday, October 25, 2011

Resource Kinds

Resource Kinds

e Define a structure, register with API call:

Tuesday, October 25, 2011

21

Resource Kinds

e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

Tuesday, October 25, 2011

21

Resource Kinds

e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

e Operations (all optional):

Tuesday, October 25, 2011

21

Resource Kinds

e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

e Operations (all optional):

e (Getcurrent usage

Tuesday, October 25, 2011

21

Resource Kinds

e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

e Operations (all optional):
e (Getcurrent usage

e (Calculate usage rate

Tuesday, October 25, 2011

21

Resource Kinds

e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

e Operations (all optional):
e (Getcurrent usage
e (Calculate usage rate

e OS function for throttling usage

Tuesday, October 25, 2011

21

Resource Kinds

e Define a structure, register with API call:

e Name, number of devices, names of devices,
per-device max allocation

e Operations (all optional):
e (Getcurrent usage
e (Calculate usage rate
e OS function for throttling usage

e OS function for pinning to device

Tuesday, October 25, 2011

21

Example (CpuUtil)

Example (CpuUtil)

e Name:CpuUtil

Example (CpuUtil)

e Name:CpuUtil

e Number of Devices: NUM CPUS

Example (CpuUtil)

e Name:CpuUtil
e Number of Devices: NUM CPUS

e Names of Devices: [0, ...,n]

Example (CpuUtil)

Name: CpuUtil
Number of Devices: NUM CPUS
Names of Devices: [0, ..., n]

Max Allocation: [1.0, ..., 1.0]

Example (CpuUtil)

Example (CpuUtil)

e Operations:

Example (CpuUtil)

e Operations:
e Getter: CPU time on behalf of thread

Example (CpuUtil)

e Operations:
e Getter: CPU time on behalf of thread

e Calculator: (getter 2 - getter 1)/ Time

Example (CpuUtil)

e Operations:
o Getter: CPU time on behalf of thread
e Calculator: (getter 2 - getter 1)/ Time
e Throttler: None

Example (CpuUtil)

e Operations:
o Getter: CPU time on behalf of thread
e Calculator: (getter 2 - getter 1)/ Time

e Throttler: None

e Pinner:Linux cpuset cgroup

Resource Kinds

Resource Kinds

e NOow we can write:

Resource Kinds

e NOow we can write:

® require (CpulUtil (core,

Tuesday, October 25, 2011

util))

24

Resource Kinds

e Now we can write:
® require (CpuUtil (core, util))

o All platform specific stuff is in the
Resource Kind definitions

Resource Kinds

e Now we can write:
® require (CpuUtil (core, util))

o All platform specific stuff is in the
Resource Kind definitions

e Hopefully this makes porting easy

Tuesday, October 25, 2011

Policies

25

Policies

e Query availability, require a set of resources

Tuesday, October 25, 2011

25

Policies

e Query availability, require a set of resources

e e.g.ncores,don’'t care which

Tuesday, October 25, 2011

25

Policies

e Query availability, require a set of resources
e e.g.ncores,don’'t care which

e Allocated and released all-together

Tuesday, October 25, 2011

25

Policies

e Query availability, require a set of resources
e e.g.ncores,don’'t care which

e Allocated and released all-together

e Defined by DSL embedded in C

Tuesday, October 25, 2011

25

Policies

e Query availability, require a set of resources
e e.g.ncores,don’'t care which
e Allocated and released all-together

e Defined by DSL embedded in C

e No writing globals, or calling arbitrary
functions

Tuesday, October 25, 2011

25

Policies

e Query availability, require a set of resources
e e.g.ncores,don’'t care which
e Allocated and released all-together

e Defined by DSL embedded in C

e No writing globals, or calling arbitrary
functions

e Butafew special functions are made
available

Tuesday, October 25, 2011

25

Tuesday, October 25, 2011

Policy DSL Example

policy cores(int n) {
int 1, found = O0;
int d = num devs (“CpuUtil”);

for (r = 0 ... d) {
1f (found == n) break;
if (available (“CpuUutil”, i) == 1.0)
require (“CpuUtil”, i).value = 1.0;
found++;

J
J

if (found < n) return PolicyFailure;
return PolicySuccess;

{

26

Preliminary Results

e QR decomposition of big matrices:
e Intel TBB-> Intel MKL-> GNU OpenMP
e “deltaX” matrix on g4-core Intel box

e Usingonly the “cores” policy

Tuesday, October 25, 2011

27

Preliminary Results

e QR decomposition of big matrices:
e Intel TBB-> Intel MKL-> GNU OpenMP
e “deltaX” matrix on g4-core Intel box

e Usingonly the “cores” policy

L2 Miss | Context CPU .
Method Rate Switches [Migration Changes | Time(s)
Default 3.2% 2.6X1075 | 4891 O 06.8
Lithe 0 A Custom
[Pan, et al. PLDI"10] 23/) 46X1O 4 27 TBB’ OI\/\P 897
Us 3.0% |4.0x10"4 41 4 35.9

Tuesday, October 25, 2011

Continuing Work

Continuing Work

e [ryouton moreapps

Continuing Work

e [ryouton moreapps

e Write a library of useful policies

Tuesday, October 25, 2011

28

Continuing Work

e [ryouton moreapps
e Write a library of useful policies

e Think of a clever name

Tuesday, October 25, 2011

28

Tuesday, October 25, 2011

Continuing Work

Try out on more apps
Write a library of useful policies
Think of a clever name

more resources => rerun policy function?

28

Tuesday, October 25, 2011

Continuing Work

Try out on more apps

Write a library of useful policies

Think of a clever name

more resources => rerun policy function?

Port to Barrelfish

28

Tuesday, October 25, 2011

Continuing Work

Try out on more apps

Write a library of useful policies

Think of a clever name

more resources => rerun policy function?
Port to Barrelfish

e Seek cooperation between OS and runtime

28

Tuesday, October 25, 2011

Continuing Work

Try out on more apps

Write a library of useful policies

Think of a clever name

more resources => rerun policy function?
Port to Barrelfish

e Seek cooperation between OS and runtime

e Single machine -> Cluster?

28

guestions

