
Jana Giceva

supervised by
Prof. Dr. Gustavo Alonso

Database-Operating System
Co-Design

Motivation

 Diversity in hardware resources
 Scalability
 Heterogeneity

 Factors influencing database research
 New hardware trends
 Diverse workloads
 Application requirements and constraints

 Database appliances
 Specifically tailored hardware, operating system and underlying

software
 Cross-layer optimizations

26-Oct-11 2 Jana Giceva : Database-OS co-design

26-Oct-11 3 Jana Giceva : Database-OS co-design

 NUMA awareness and its impact on performance:
 Aware and unaware memory access and DRAM utilization
 NUMA effects on performance

Heterogeneity in modern hardware: NUMA

 NUMA definition
 Non-Uniform Memory Architecture

 AMD Shanghai NUMA layout

26-Oct-11 4 Jana Giceva : Database-OS co-design

 Building blocks:
 Barrelfish OS [1]

 Addresses hardware trends: multicore scalability and heterogeneity

 CSCS engine [2]

 Addresses workload demands and application requirements

 Questions we aimed to answer:
 Porting the CSCS engine on Barrelfish

 Challenges?, Modifications?

 Performance
 Detailed analysis? Varying factors? Hot-spots? How does it scale?

 Nature and characteristics
 Compared to baseline run on Linux?

 How does it perform on other architectures?
 Ideas for future work?

Problem statement

[1]Barrelfish: http://barrelfish.org/ [2] CSCS engine: Shared Scans on Column Stores: contact Tudor Salomie

http://barrelfish.org/

26-Oct-11 5 Jana Giceva : Database-OS co-design

 Column stores:
 Serialize column values together
 Engines using column stores:

 Vertica, C-Store, MonetDB, SAP T-Rex

 Shared scans:
 Multi-query optimizations[1]

 Shared scans:
 RedBrick, IBM Blink, Crescando

 Crescando’s ClockScan

 Shared scans on column stores
 Main-memory CSCS engine

The CSCS engine

[1] Timos K.Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13:23-52, March 1988

26-Oct-11 6 Jana Giceva : Database-OS co-design

 Implementation of a Multikernel:
 Treats machines as a network of cores
 Explicit message passing communication
 No sharing rather replication and partitioning

 Handling hardware heterogeneity:
 Hardware transparency for the applications
 System Knowledge Base (SKB) service
 Delegate resource allocation to the applications

 Scheduling
 At multiple timescales: long-, medium- and short-term

The Barrelfish OS

26-Oct-11 7 Jana Giceva : Database-OS co-design

 Differences:
 Kernel, C library, C++ library

 Dependencies:
 Boost library, Google hash library

 Challenges:
 CMake to Hake conversion
 C++ support: exceptions

Porting the CSCS engine on Barrelfish

 Threads and synchronization primitives
 Memory allocation service
 Networking stack driver implementation

26-Oct-11 8 Jana Giceva : Database-OS co-design

 Workload:
 Amadeus - millions of flight bookings, 1 relation, 48 attributes

 real workload: constant ratio of queries and updates in a batch
 synthetic workload: varying updates, read only workload

 Machines:
 AMD SantaRosa: 2x2-core, 2.8GHz Opteron 2220, local memory controller, 2

HyperTransport links, 1MB L2 cache
 AMD Shanghai: 4x4-core, 2.5GHz Opteron 8380, 4 HyperTransport links, 512kB

local L2 cache and 6MB shared L3 cache

 Performance measurement:
 Performance counter events
 Barrelfish: caliper mode, reading from registers
 Linux: sampling mode, OProfile

Experiment setup

26-Oct-11 9 Jana Giceva : Database-OS co-design

0

250

500

750

1000

1250

1500

1750

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

co
nd

)

Batch size

Real Workload
Barrelfish

Linux

0

250

500

750

1000

1250

1500

1750

0 500 1000 1500 2000

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

co
nd

)

Number of updates

Varying Updates

Barrelfish

Linux

 In both workloads:
 The throughput curves of Linux and Barrelfish look alike

 Varying the number of updates:
 Does not impose performance degradation

 Varying the datastore size (not shown):
 Throughput is directly proportional to the datastore size loaded

Baseline results

26-Oct-11 10 Jana Giceva : Database-OS co-design

 Performance analysis:
 For both Linux and Barrelfish
 Measured performance values

 Low L1,L2 and L3 miss rates
 Low DTLB miss rate
 Good IPC/CPI values

 CPU bound

 Execution time breakdown:
 Evaluating predicate demands

string comparison
 Different C and C++ library

implementation

Linux vs. Barrelfish

0

400

800

1200

1600

2000

Barrelfish Linux

Ti
m

e
(m

ili
se

co
nd

s)

Execution time
breakdown

eval predicate

other

probing index

 Bandwidth utilization:
 Linux vs Barrelfish: ~30% difference
 Same number of bytes transferred
 Difference due to execution time

length

26-Oct-11 11 Jana Giceva : Database-OS co-design

 Multiple designs considered:
 multithreaded design
 processes sharing memory region
 processes mounting the NFS

 Implemented design:
 Multiple processes mount the

NFS
 … using the new network driver
 Barrier service synchronizes the

runs

Scale-up implementation

26-Oct-11 12 Jana Giceva : Database-OS co-design

 In both Linux and Barrelfish:
 CSCS’s throughput scales almost linearly with the number of cores

Performance on multiple cores

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

co
nd

)

Number of cores

Barrelfish scale-up

Linear scale-up

Barrelfish

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

co
nd

)

Number of cores

Barrelfish vs. Linux
scale-up

Barrelfish

Linux

NUMA analysis

 NUMA unaware memory access:
 Non uniform utilization of DRAM bandwidth and memory controller
 All pressure on the second NUMA node (cores 5 – 8)

 NUMA awareness:
 Better distribution of the memory access requests and serves
 Does not provide significant performance improvement

26-Oct-11 13 Jana Giceva : Database-OS co-design

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
B

 /
se

co
nd

Core id

DRAM bandwidth utilization
per core

NUMA unaware

NUMA aware

0

500

1000

1500

2000

2500

3000

3500

Real Read-only

Q
ue

rie
s

/ s
ec

on
d

Workload

Effects of NUMA awareness on
performance

NUMA unaware

NUMA aware

26-Oct-11 14 Jana Giceva : Database-OS co-design

 The CSCS engine works on top of Barrelfish
 Extensive performance analysis
 Performance and behavior resembles the baseline of CSCS’s run

on Linux
 More details in the thesis report[1] and on the project wiki page[2]

 Solid foundation for future work
 Can be enhanced with more complex features
 … that will use the services provided by Barrelfish

 Eventually resulting in a fully functional database
 … tightly collaborating with the OS via well defined interfaces

Thesis contribution

[1] Thesis report: https://trac.systems.inf.ethz.ch/trac/systems/mcdb/attachment/wiki/ClockScanningColumnStoresBarrelfish/Thesis.pdf

[2] Wiki page: https://trac.systems.inf.ethz.ch/trac/systems/mcdb/wiki/ClockScanningColumnStoresBarrelfish

https://trac.systems.inf.ethz.ch/trac/systems/mcdb/attachment/wiki/ClockScanningColumnStoresBarrelfish/Thesis.pdf
https://trac.systems.inf.ethz.ch/trac/systems/mcdb/wiki/ClockScanningColumnStoresBarrelfish

Ideas for future work

 Open questions
 When are we going to hit the point where scale-up throughput will no

longer follow the linear scalability line?
 What resource bottleneck are we going to hit then?

 Ideas for future work
 Short run:

 Test on more different architectures. Especially with more than 30 cores

 Define interfaces for communicating with the SKB for proper resource
allocation and deployment

 Long run:
 Extend the CSCS with more complex features that will exercise Barrelfish

functionality for scheduling and the SKB service

 Extend the SKB service to provide more online information

26-Oct-11 15 Jana Giceva : Database-OS co-design

	Database-Operating System�Co-Design
	Motivation
	Heterogeneity in modern hardware: NUMA
	Problem statement
	The CSCS engine
	The Barrelfish OS
	Porting the CSCS engine on Barrelfish
	Experiment setup
	Baseline results
	Linux vs. Barrelfish
	Scale-up implementation
	Performance on multiple cores
	NUMA analysis
	Thesis contribution
	Ideas for future work

