
Porting Nanos++ runtime to
Barrelfish

Zeus Gómez Marmolejo
Vicenç Beltran Querol
Eduard Ayguadé Parra

Cambridge Barrelfish Workshop

Cambridge, October 21st, 2011

Motivation

What we are doing

• We are trying to run OpenMP/StarSs programs
on Barrelfish, on different architectures

• OmpSs: extends OpenMP with StarSs
programming/execution model

 for (kk=0; kk<NB; kk++) {

 lu0(A[kk][kk]);

 for (jj=kk+1; jj<NB; jj++)

 if (A[kk][jj] != NULL)

 fwd(A[kk][kk], A[kk][jj]);

 for (ii=kk+1; ii<NB; ii++)

 if (A[ii][kk] != NULL) {

 bdiv (A[kk][kk], A[ii][kk]);

 for (jj=kk+1; jj<NB; jj++)

 if (A[kk][jj] != NULL) {

 if (A[ii][jj]==NULL)

 A[ii][jj]=allocate_clean_block();

 bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

 }}}

#pragma css task inout(diag[B][B]) highpriority

void lu0(float *diag);

#pragma css task input(diag[B][B]) inout(row[B][B])

void bdiv(float *diag, float *row);

#pragma css task input(row[B][B],col[B][B])

 inout(inner[B][B])

void bmod(float *row, float *col, float *inner);

#pragma css task input(diag[B][B]) inout(col[B][B])

void fwd(float *diag, float *col);

Architecture of Nanos++
• We use Mercurium to convert OmpSs to C++

code with calls to the runtime

• The runtime creates the dependency graph and
schedules tasks

Requirements of Nanos++
• Dynamic libraries, loaded “on the fly” (plugins):

 Solved using static linking on a different executable
section

• TLS (Thread Local Storage)

 Now possible in the new version of Barrelfish

• Gasnet library

× Barrelfish’ memory leak

• Nanox is written in C++, using an extensive set of
C++03 and C++11 features, also with:

× Exceptions

× Atomic primitives

× Complete STL implementation (queues, bitsets,…)

GNU Toolchain and newlib

Current compilation system

Hake controls all the build
process

 Pros Cons

• Detects everything
Header files
Object files
Libraries, paths,
Flounder interfaces

• Hakefiles are simple

• A bit inflexible
Not compatible with GNU
libtool and autoconf

• Existing apps are
difficult to port
The standard libraries
and headers are missing

GNU toolchain
Proposal to create a GCC cross compiler and its
toolchain. Purpose:

Create static executables that can be directly
executed in BF

• Binutils. Added new target names, new linker
scripts: .text = 0x400000 & .data = 0x600000

• GCC. Added:

• arch spec file, with pre-defines: BARRELFISH

• default libraries “–lbarrelfish –lc”

• crt* object files and section placement

Newlib and GNU libstdc++

• newlib, as a replacement for libc:

• Most of the work done here

• Less code to maintain

• Complete, thread-safe and totally implemented libc

• Portable library, to other architectures and OS

• GNU libstdc++ & libgcc_eh (complete C++)

• Don’t need any change, as they depend only in the
libc implementation

New targets

• x86_64-pc-barrelfish

• i586-pc-barrelfish

• i586-scc-barrelfish

To compile a GNU application, it should be as
easy as:

./configure –-host=x86_64-pc-barrelfish

Example: GNU bash running in Barrelfish

GNU bash v4.0 running on BF

Not everything is so easy

Very basic newlib backend implementation:

• fork(), wait(), kill() and execve() not
implemented, (so bash is not able to execute
any command!) 

• Newlib not really prepared for microkernels:

• One approach is to copy and rename userbase
libraries to newlib to avoid naming clashes. Now
broken due to Barrelfish change of version

• Rearrange header files and change Barrelfish
names in order not to have conflicting types. Store
BF build and source directories in GCC config

Example: current malloc() call

Other examples like fopen() or printf() have
similar problems

Other problems happily avoided

Using the malloc() libc call present in newlib,

• Relies on sbrk(), the 1st time is allocating a
huge space, no additional calls to BF mem
alloc needed

for(;;) {
 p = malloc(65536);
 free(p);
}

for(;;) {
 p = malloc(65536);
 free(p);
}

The memory leak in the Barrelfish
memory allocator can be avoided by:

All these would be the tools to compile …

Gasnet

What is Gasnet?
• Low-level networking layer for high-performance

communication

• Implements the active messages model:

• Nodes can exchange information by calling:

• gasnet_AMRequestShort0(node, handler_idx). The message
is sent and the corresponding function in the remote node is
executed. Can call to: Reply().

• Four type of messages:

• Short

• Medium

• Long

• LongAsync

• All messages are synchronous (func returns when all
params are copied and msg sent), except LongAsync

Why Gasnet?

Gasnet is being used in Nanox in the current
cluster implementation for parallel execution of
tasks

Used too in:

• GCC/UPC Compiler

• Titanium Compiler

• Co-Array Fortran Compiler

• Chapel Project

Architecture of Gasnet

Gasnet core API

UDP

conduit

SMP

conduit

MPI

conduit

BF

conduit

Network hardware

• Common API code, initialization and
communication

• Specific conduit code for each network
hardware

• Proposed a new
conduit for
Barrelfish, using
flounder for
communication

Gasnet and message passing in
Barrelfish

Barrelfish

• Msgs sent to endpoints
through a binding

• Remote funcs have to
be registered with
connect()/bind()

• Messages are
completely
asynchronous

Gasnet

• Msgs sent to nodes, no
binding

• Remote funcs
registered with
gasnet_attach()

• Messages are sent
synchronously except
LongAsync

BF conduit implementation

Features required in the conduit:

• Create a complete mesh of connections among
all nodes

• Central barriers for gasnet initialization

• Node gather to exchange information

• Event polling

• Send/receive messages

Gasnet BF conduit implementation
• Uses the Barrelfish flounder generated stub to pass

messages

• To simulate the synchronous behaviour of gasnet, we use 2
threads.

• However, the binding cannot be handled by two threads
concurrently without proper locking.

Gasnet BF conduit status

Currently stalled due to the memory leak, as
gasnet benchmarks are transferring big amount
of data: malloc()/free() continuously called.

Compiles and runs using the standard Barrelfish
compiler, a script that calls the actual compiler

Expected to compile using the new GCC cross
compiler

Questions?

