Werner Haas
 Design Engineer

Intel Labs, Braunschweig (Germany)

SYSTEM-LEVEL IMPLICATIONS OF NON-VOLATILE, RANDOM-ACCESS MEMORY

Level-Setting

- Intel Labs
\rightarrow No conclusions on future roadmap possible
\rightarrow No disclosure of research details
- Electrical engineer
\rightarrow No new computer architecture concepts
\Rightarrow No low-level material science
o System-level implications
\Rightarrow No direct link to Barrelfish

Can Barrelfish provide a

 better environment for experimentation?
Emerging Memory Technologies

(1)

- "Computer memory innovation is nearly irresistible" (R\&D Magazine, Oct. 11)
- Charge-based memories (DRAM, Flash) face severe scalability problems
- Industry-focus on resistance as information carrier
o Implicit non-volatile storage \rightleftharpoons NVRAM
o Opportunity for universal memory (working memory and storage)

Emerging Memory Technologies

(2)
o Current prototypes

- PCM

Phase-Change Memory

- STTRAM
- ReRAM Resistive RAM

Technology	DRAM	PCM	STTRAM	ReRAM
Density	0	+	-	++
Latency (ns)	$10 / 10$	$20 / 50$	$6 / 12$	$10 / 10$
Energy (pJ/b)	2	100	3	2
Endurance	n / a	10 e 8	10 e 15	10 e 12

[^0]
System Implications

○ DRAM \rightarrow NVRAM

- But volatile memory in cache hierarchy
- SW-transparent vs. SW-managed
- Virtual memory
- Huge physical address space
- Protection of storage-class data
o Persistent memory
- Orthogonal persistence
- صate anoniritm

Can Barrelfish provide a
better environment for experimentation?

[^0]: Taciano Perez, Cesar A.F. De Rose:
 Non-Volatile Memory: Emerging Technologies And Their Impacts on Memory Systems

