Werner Haas
Design Engineer
Intel Labs, Braunschweig (Germany)

SYSTEM-LEVEL IMPLICATIONS OF NON-VOLATILE, RANDOM-ACCESS MEMORY

Level-Setting

- Intel Labs
 - No conclusions on future roadmap possible
 - → No disclosure of research details
- Electrical engineer
 - No new computer architecture concepts
 - No low-level material science
- System-level implications
 - No direct link to Barrelfish

Can Barrelfish provide a better environment for experimentation?

Emerging Memory Technologies (1)

- "Computer memory innovation is nearly irresistible" (R&D Magazine, Oct. 11)
 - Charge-based memories (DRAM, Flash) face severe scalability problems
 - Industry-focus on resistance as information carrier
- Implicit non-volatile storage NVRAM
- Opportunity for universal memory (working memory and storage)

Emerging Memory Technologies (2)

Current prototypes

PCM Phase-Change Memory

STTRAM Spin-Torque Transfer RAM

ReRAM
 Resistive RAM

Technology	DRAM	PCM	STTRAM	ReRAM
Density	0	+	-	++
Latency (ns)	10/10	20/50	6/12	10/10
Energy (pJ/b)	2	100	3	2
Endurance	n/a	10e8	10e15	10e12

Taciano Perez, Cesar A.F. De Rose:

Non-Volatile Memory: Emerging Technologies And Their Impacts on Memory Systems

System Implications

- DRAM → NVRAM
 - But volatile memory in cache hierarchy
 - SW-transparent vs. SW-managed
- Virtual memory
 - Huge physical address space
 - Protection of storage-class data
- Persistent memory
 - Orthogonal persistence
 - Data cocurity

Can Barrelfish provide a better environment for experimentation?