
HARDWARE SUPPORT FOR
MESSAGE PASSING IN THE
BARRELFISH OPERATING SYSTEM

Richard Black, Vladimir Gajinov, Tim Harris, Ross McIlroy

Overview

2

Portable messaging API – Flounder

Higher level primitives – AC/THC

AMP inter-
connect driver

New h/w
features

UMP inter-
connect driver

Cache coherent
shared memory

Prior work

HW approaches:
Generally – resources

are per-core,
not per process.

Communication within
processes, not
between them.

3

Prior work: SCC

24 * 2-core tiles

On-chip mesh n/w

Non-coherent caches

Message passing buffer

L2 Core

L2

Router MPB

Core

VRC

M
C

-1

M
C

-3

M
C

-0

M
C

-4

System interface

RAM RAM

RAM RAM

4

Prior work: MSR Beehive

Ring interconnect

Message passing in h/w

No cache coherence

Split-phase memory access

Module MemMux

MQ

DDR Controller

Core 2

RingIn [31 : 0] ,

SlotTypeIn [3 : 0] ,

SrcDestIn [3 : 0]

Core 3 Core N

Module RISCN Module RISCN Module RISCN

Messages , Locks

RA from display

controller

RA ,

WA

WD

RD (128 bits) Rdreturn (32 bits)

(pipelined bus to

all cores)

RD to

Display

controller

Core 1

Module RISCN

RAM

5

Prior work

SW approaches:
Message channels over

coherent shared
memory.

Software polling,
backing off to

notification via kernel.

HW approaches:
Generally – resources

are per-core,
not per process.

Communication within
processes, not
between them.

6

Address spaces

Receiver

Rx buffer

Sender

Tx buffer

Physical

memory

Buffer

7

Prior work

SW approaches:
Message channels over

coherent shared
memory.

Software polling,
backing off to

notification via kernel.

HW approaches:
Generally – resources

are per-core,
not per process.

Communication within
processes, not
between them.

Key idea:
Add just enough HW to

(i) avoid reliance on
cache-coherent shared

memory, and
(ii) avoid need for
polling / kernel on

notification.

8

Receiver @ Core 1

Message passing: fast path

Core 0 Core 1

Cache Cache

RAM

Sender @ Core 0

Receiver polling for
next message

1 Prepare msg in regs

2 send(v_addr, thread)

5 Update line at core 1 4 Send on interconnect

3 Map v->p, thread->core
(p_addr, data)

9

Message passing: slow paths

 Cache line not present at receiver?

 Policy decision: speculatively allocate, or not

 If not allocated: inject write from the sender’s cache

 Receiver process not running…

 …can always inject write, as above

 Receiver core unknown

 Use thread translation buffer (TTB) to map s/w ID to
target core

 Handle consistency by TLB-shootdown-style approaches, or
HW coherence between TTBs

10

Key ideas

 Protection and naming are done via existing virtual
memory mechanisms

 If I can write to a page you can read, then I can send a
message to you

 Multiple message channels can be used

 Mutually-untrusting senders can send to the same receiver

 In the common case transfers are cache-to-cache

 But storage is backed by ordinary memory…

 …and in-flight messages can be reified in memory in tricky
cases (paging to disk / hibernate / etc.)

11

Notification

Process @ Core 1

Notification bitmap
(1+ cache lines in size) in a

page shared between
sender and receiver

1 Send message as before

3 notify(kernel_addr, bit, thread)

2 notify(user_addr, bit, thread)

Kernel @ Core 1

4 Rx core kernel watches bitmap

12

Simulated h/w

13

• Per-core message unit, avoid
changes to cache protocol.

• Buffers outgoing messages
while blocked on the
interconnect.

• Buffers incoming messages
while updating local L1.

L1
I-Cache

L2 Cache

L1 D-Cache

TTB

NWL

Core Pending
messages

TTB: maps
SW

threads to
physical
core IDs

NWL: white list
of permitted
(v_addr, bit)

pairs

Microbenchmark
64-cores, per-core L1, plus one bank of a shared L2. A ring
of N cores circulates a single message. We vary (i) N, the
size of the ring, (ii) the placement of nodes and of buffers in
L2, and (iii) cross-talk from other cores.

0

100

200

300

400

500

2 4 8 16 32 64

C
yc

le
s

p
er

 m
es

sa
g

e

N: #cores in the ring

0

100

200

300

400

500

2 4 8 16 32 64

C
yc

le
s

p
er

 m
es

sa
g

e

N: #cores in the ring

Shared memory, unlucky
Shared memory, lucky

HW acceleration, unlucky
HW acceleration, lucky

Idle Busy

14

Preliminary results, 2-core 2PC

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

1 100 10000 1000000 100000000

M
ea

n
 2

P
C

 la
te

n
cy

 /
cy

cl
es

Spinning delay / cycles

amp-none

amp-imm

amp-fair

ump

amp-none-bg

amp-imm-bg

amp-fair-bg

ump-bg

15

Preliminary results, 2-core 2PC

0

1000

2000

3000

4000

5000

6000

7000

1 100 10000 1000000 100000000

B
ac

kg
ro

u
n

d
 t

h
ro

u
g

h
p

u
t

(C
P

U
-b

o
u

n
d

 jo
b

)

Spinning delay / cycles

cpu

amp-none

amp-imm

amp-fair

ump

16

Current status
 Initial prototype for Beehive

 Use in numerical message-based tests programs

 Ping-pong, barrier, LU-factorization from SPLASH2

 Message passing in Barrelfish

 Port of Barrelfish to Gem5 full-system simulator

 Extensions to Gem5 to model non-coherent memory

 Implementation for real x86/x64 hardware

 Ignores protection questions

 Scaling is not quite right (modifications done sender-side)

 Lets us look at OS integration

 What else can we use this for?

17

©2011 Microsoft Corporation. All rights reserved.
This material is provided for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
SUMMARY. Microsoft is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

www.research.microsoft.com

