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Overview 
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Portable messaging API – Flounder 

Higher level primitives – AC/THC 
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New h/w 
features 
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connect driver 

Cache coherent 
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Prior work 

HW approaches: 
Generally – resources 

are per-core,  
not per process. 

Communication within 
processes, not  
between them. 
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Prior work: SCC 
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Prior work: MSR Beehive 

Ring interconnect 

Message passing in h/w 

No cache coherence 

Split-phase memory access 
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Prior work 

SW approaches: 
Message channels over 

coherent shared 
memory. 

Software polling, 
backing off to 

notification via kernel. 

HW approaches: 
Generally – resources 

are per-core,  
not per process. 

Communication within 
processes, not  
between them. 
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Address spaces 

Receiver 

Rx buffer 

Sender 

Tx buffer 

Physical 

memory 

Buffer 
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Prior work 

SW approaches: 
Message channels over 

coherent shared 
memory. 

Software polling, 
backing off to 

notification via kernel. 

HW approaches: 
Generally – resources 

are per-core,  
not per process. 

Communication within 
processes, not  
between them. 

Key idea: 
Add just enough HW to  

(i) avoid reliance on 
cache-coherent shared 

memory, and 
(ii) avoid need for 
polling / kernel on 

notification. 
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Receiver @ Core 1 

Message passing: fast path 

Core 0 Core 1 

Cache Cache 

RAM 

Sender @ Core 0 

Receiver polling for 
next message 

1 Prepare msg in regs 

2 send(v_addr, thread) 

5 Update line at core 1 4 Send on interconnect 

3 Map v->p, thread->core 
(p_addr, data) 
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Message passing: slow paths 

 Cache line not present at receiver? 

 Policy decision: speculatively allocate, or not 

 If not allocated: inject write from the sender’s cache 

 Receiver process not running… 

 …can always inject write, as above 

 Receiver core unknown 

 Use thread translation buffer (TTB)  to map s/w ID to 
target core 

 Handle consistency by TLB-shootdown-style approaches, or 
HW coherence between TTBs 
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Key ideas 

 Protection and naming are done via existing virtual 
memory mechanisms 

 If I can write to a page you can read, then I can send a 
message to you 

 Multiple message channels can be used 

 Mutually-untrusting senders can send to the same receiver 

 In the common case transfers are cache-to-cache 

 But storage is backed by ordinary memory… 

 …and in-flight messages can be reified in memory in tricky 
cases (paging to disk / hibernate / etc.) 
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Notification 

Process @ Core 1 

Notification bitmap  
(1+ cache lines in size) in a 

page shared between 
sender and receiver 

1 Send message as before 

3 notify(kernel_addr, bit, thread)  

2 notify(user_addr, bit, thread)  

Kernel @ Core 1 

4 Rx core kernel watches bitmap 
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Simulated h/w 
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• Per-core message unit, avoid 
changes to cache protocol. 

• Buffers outgoing  messages 
while blocked on the  
interconnect. 

• Buffers incoming messages 
while updating local L1. 

L1 
I-Cache 

L2 Cache 

L1 D-Cache 

TTB 

NWL 

Core Pending 
messages 

TTB: maps 
SW 

threads to 
physical 
core IDs 

NWL: white list 
of permitted 
(v_addr, bit) 

pairs  



Microbenchmark 
64-cores, per-core L1, plus one bank of a shared L2.  A ring 
of N cores circulates a single message.  We vary (i ) N, the 
size of the ring, (ii ) the placement of nodes and of buffers in 
L2, and (iii ) cross-talk from other cores. 
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N: #cores in the ring 
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N: #cores in the ring 
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Preliminary results, 2-core 2PC 
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Preliminary results, 2-core 2PC 

0

1000

2000

3000

4000

5000

6000

7000

1 100 10000 1000000 100000000

B
ac

kg
ro

u
n

d
 t

h
ro

u
g

h
p

u
t 

(C
P

U
-b

o
u

n
d

 jo
b

) 

Spinning delay / cycles 

cpu

amp-none

amp-imm

amp-fair

ump

16 



Current status 
 Initial prototype for Beehive 

 Use in numerical message-based tests programs 

 Ping-pong, barrier, LU-factorization from SPLASH2 

 Message passing in Barrelfish 

 Port of Barrelfish to Gem5 full-system simulator 

 Extensions to Gem5 to model non-coherent memory 

 Implementation for real x86/x64 hardware 

 Ignores protection questions 

 Scaling is not quite right (modifications done sender-side) 

 Lets us look at OS integration  

 What else can we use this for? 
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