OS support in ARMv7-A

Matt Horsnell

Senior Research Engineer, ARM Ltd.

The Architecture for the

orld®

the Digital Wol

The Architecture for the Digital World®

Outline

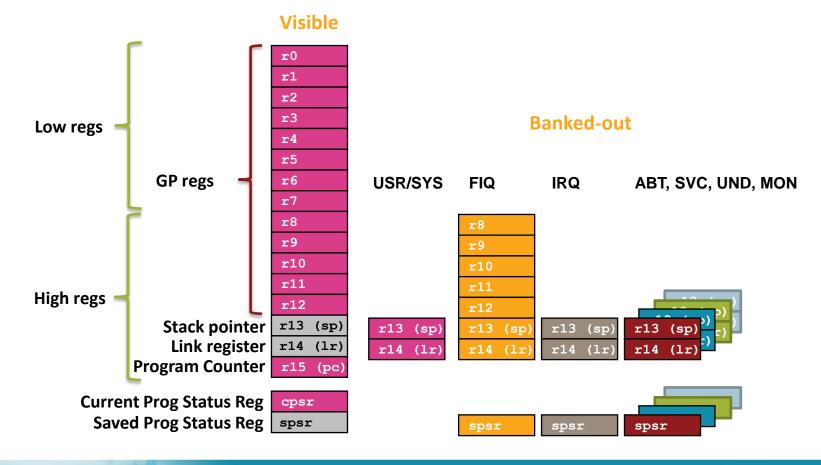
ARM

ARM Architecture

ARM v7A – OS support

- Memory ordering and MP
- Exception/Interrupt handling
- Power management
- Security
- Virtualization
- big.LITTLE

ARM for OS research


ARM

- The ARM architecture is now pervasive in many markets
- ~25% of all electronic products contain at least one ARM
- ARM designs processors, cell libraries, and associated IP
- Cambridge HQ
 - Multiple sites worldwide (San Jose, Austin, Sophia, Bangalore...)
- > 2,000 employees

ARM v7-A

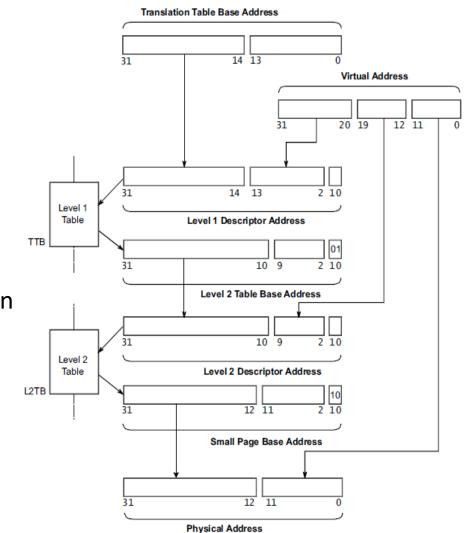
- 32-bit, RISC, load/store architecture
- Thumb2 16/32-bit instruction set
- At least 7 modes ... +MON, +HYP

ARM v7-A

31	27 26 25 24	23 20	19 16	15 10	98	87	65	4 0	0
NZCV	Q IT[0:1] J	Reserved	GE[3:0]	IT[7:2]	ΕA	I	FΊ	M[4:0]	

Program status register

- Conditions: Negative, Zero, Carry, oVerflow, saturation
- States: Jazelle, Thumb
- Modes: USR, SYS, FIQ, IRQ, ABT, SVC, UND, MON
- Endianess: load/stores
- Interrupts: disable bits


ARM v7-A

- Cortex A (applications) class processors
- VFP and NEON
- Backward compatible
- Full 4GB virtual and physical address space
- Efficient hardware page table walking from V to P
 - VM page sizes (4KB, 64KB, 1MB, 16MB)
 - Cacheability and access permissions per page basis
- Big-endian/Little-endian support
- Unaligned access support
- SMP support on MPCoreTM variants
- PIPT data caches

ARM v7-A – MMU

- 2-level MMU
 - V2P translation
 - cacheability, permissions
- L1 page table
 - 4GB into 1MB (16KB)
 - 4 entry types: Fault, L2 PTR, section, super-section
- L2 page table
 - IMB into 64 or 16KB
 - consumes 1KB
 - 3 entry types: Fault, large page, small page

ARM v7-A - LPAE

- Translation of 32-bit virtual to ≤ 40-bit physical addresses
 - ease pressure on 4GB limit for IO and memory
- Each process can access 4GB, but system wide access to 1TB
 - Multiple large process can remain resident
- Support added
 - Hierarchical permissions
 - Contiguous page hints
 - "Privileged never execute"
 - ASID stored in TTBR
 - Simplified fault encoding

The Architecture for the Digital World®

Weakly ordered

Program Order

- 1: STR R12, [R1]
- 2: LDR R0, [SP], #4
- 3: LDR R2, [R3,#8]

Execution Timeline

Access 1 goes to write buffer
Access 2 causes a cache lookup which misses
Access 3 causes a cache lookup which hits
Access 3 returns data into ARM register
Cache line-fill triggered by Access 2 returns data
Memory store triggered by Access 1 is performed

Time

barriers - instructions that apply ordering constraints

DSB - Data synchronization barrier

- processor waits for all pending explicit data accesses to complete before any further instructions are executed.
- DMB Data memory barrier
 - all memory access in program order before the barrier must complete before any memory access after the barrier.
- ISB Instruction synchronization barrier
 - flushes the pipeline and pre-fetch buffer so that all instructions following the ISB are fetched from cache or memory after the instruction has completed.

Processor A:

STR R0, [Addr1] LDR R1, [Addr2]

Processor B:

STR R2, [Addr2] LDR R3, [Addr1]

No ordering constraints

- Assume no hardware implied ordering
- No software barriers

Valid outcomes?

Processor A:

STR R0, [Msg]@ write new data into postboxSTRBR1, [Flag]@ new data is@earlyute rlatd in postboxSTR R1, [Flag]@ new data is ready to read

Processor B:

Poll_loop:

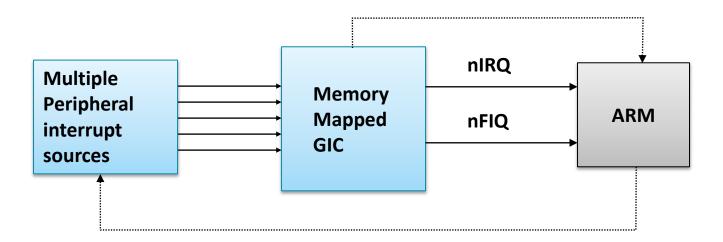
LDR R1, [Flag] CMP R1,#0 BEQ Poll_loop DIMBR0, [Msg] LDR R0, [Msg]

@ is the flag set yet?

@ read new d@aensure flag set@ read new data.

barriers are expensive

incoherent instruction caches


ARM – exception handling

exception		1 1				
any condition that halts normal execution						
 requires handler routine 						
exception entry	ception entry ^{0x2}					
preserves addr of next instruction in LR	0x1	B IRQ				
 copy CPSR into SPSR 	0x1	4 (Hypervisor trap)				
	0x1	Data Abort				
modifies CPSR bits	0x0	C Prefetch Abort				
forces the PC to the exceptions vector ac	ddress 0x0	3 Supervisor call				
	0x0	4 Undefined Instruction				
exception exit	(0xffff0000 +) 0x0) Reset				
restore CPSR from SPSRset the PC using the LR	kernel/arch/arm/init.c	Vector Table kernel/include/arch/arm/exceptions.h				

ARM

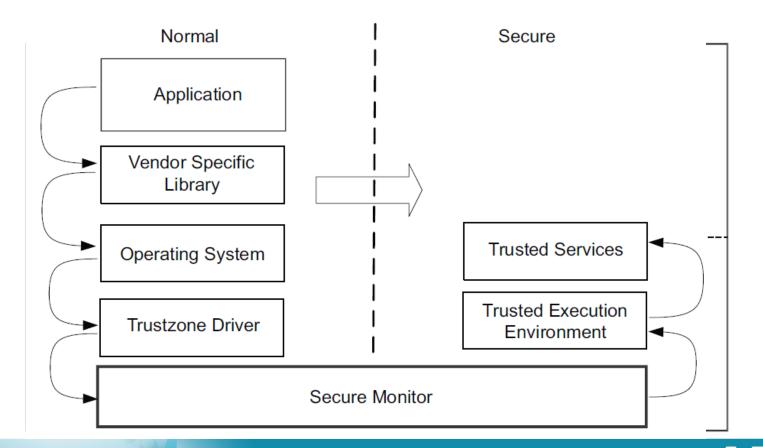
ARM – interrupt handling

- SoCs have a wide range of external source interrupts
 - these are mapped onto interrupts which generate exceptions
- FIQ/IRQ
- Generic Interrupt Controller (GIC)
 - memory mapped registers
 - manages the delivery of interrupts to the ARM

The Architecture for the Digital World®

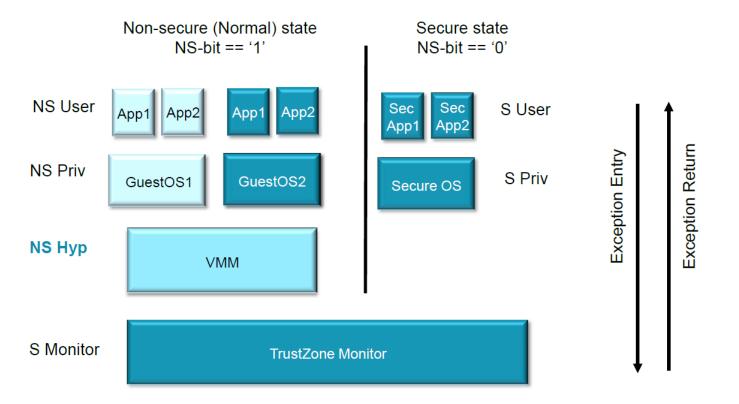
ARM – power management

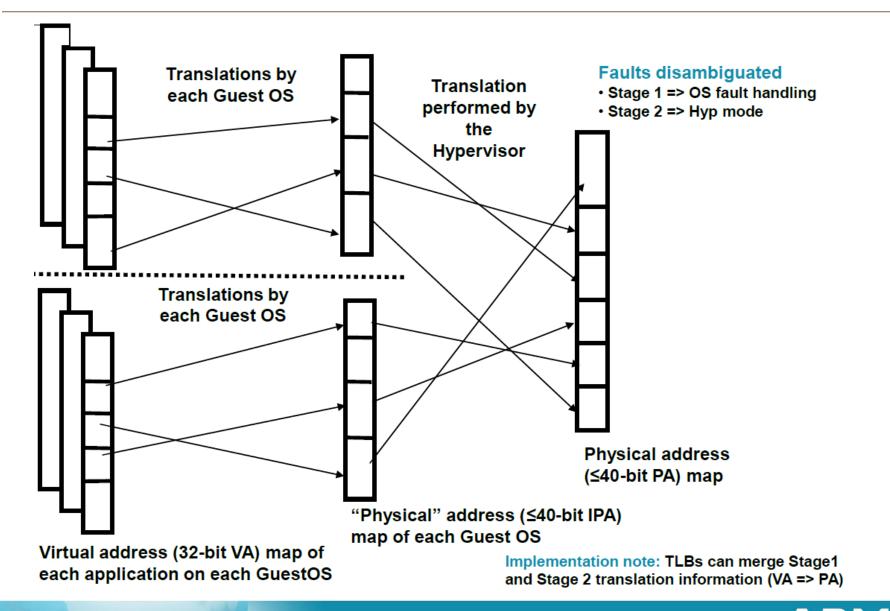
- Many ARM systems are mobile devices
 - optimization of power usage is a key design constraint
- Programmers can code for low-power
 - TCO, cooling and environment issues
- ARM power levels
 - Run, Standby, Dormant, Shutdown
- Standby
 - WFI/WFE hints to stall processor and gates the clock
 - enter/exit 2-cycles
- Dormant
 - processor state saved to memory, clock gated and logic switched off
 - enter/exit ~15K cycles
- DVFS



ARM - Security

TrustZone


- division of hw and sw resources
- restricted access to secure services through MON mode


ARM - Virtualization

Virtualization extension to v7-A

- new privilege level for the hypervisor (HYP)
- 2-stage address translation OS and hypervisor levels
- complements the security extensions

ARM - Virtualization

ARM – big.LITTLE

heterogeneous "switched" MP

- ultra low-power core (Cortex-A7)
- Iow-power high performance core (Cortex-A15)

switch between cores, maximising energy efficiency

Power benefit from Cortex-A7 At the same desired performance **Highest Cortex-A7** At the same desired performance **Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A7**

Performance

The Architecture for the Digital World®

architecturally Identical *

ARM – OS research

ARM v7-A is a mature full-featured architecture

many cheap dev boards

- don't need to risk bricking your phone/NAS/pda anymore!
- pandaboard, samsung origen board, ST snowball, Freescale iMx
- Linux/Android builds available & supported by linaro.org
- ~\$150-200 within the reach of academic research
- Cortex-A Programmer's Guide
 - great free guide explaining ARM v7-A and OS programming
 - http://bit.ly/CortexAProg
 - (requires email registration)

Id® The Architecture for the Joint Architecture

The Architecture for the Digital World®

