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Motivation m
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e Future machines
— No shared memory
— No cache-coherence

e Explicit sharing

— Message passing
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Motivation Il m
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e Message passing is a bottleneck
— Kernel entry
— Interrupt costs

=> Does not scale with number of channels
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Our contribution m
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 The message passing co-processor (mcp)
— message passing in hardware, one per core?
— Offload message-passing overhead
— application cores can do useful work

e Describe the minimal interface to mcp
* Prototype of message passing hardware

— investigate protocol design space



Part 1:

DESIGN
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Minimal interface m
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e Every application needs own context on mcp
— Protection!
— Context mapped to its virtual address space

e Signaling channels

— Separate channels for each direction, no locks
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Minimal interface Il m
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* Protocol to signal:

— Creation of new domains

e To create per-application state on mcp

— Creation of new channels

e Lookup of routing information for local channel id

— Context-switches
* mcp needs to context-switch as well
e Signal beginning and end of context-switch
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Transparent hardware device m
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* Protocol between mcps heavily depending on:

— Architecture
— Interconnect

* Protocol is transparent to user-level apps

— Exception: flow-control?!

* mcp acts according to interface
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Interconnect protocol m
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e However, we believe we need a reservation
based system

— Due to networking issues

e starvation, contention, head-of-the line blocking, ..

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 11



Messages to c2

Networking issues
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Networking issues

Interconnect

Buffers are full

Messages cannot be send although
receiver has free buffer space
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IMPLEMENTATION ON THE SCC



Intel SCC Overview Ej
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e 48 cores (32Bit x86)
* Groups of 2 cores called tile
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Intel SCC Overview Ej
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e Cores on tile share message passing buffers

— 16 KiB
— Efficient communication
between cores on tile core 2
mcp

— Mapped into virtual
address space of other
cores

mpb (16 KiB)

router
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mcp implementation on SCC m
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e Every other core as dedicated mcp

e MPB holds:
— Per-application buffers (UL)

e Incoming/outgoing messages to application
— Inter-core buffers (IC)

 Messages from other mcps
e Each mcp has separate buffer -> no locking

— Signaling channels

UL | UL

i | out Signaling, ... IC (4 KiB)
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mcp implementation on SCC I m
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 Reservation: RTS/CTS based

— Ready-To-Send (RTS): Sender has message to send
— Clear-To-Send (CTS): Receiver accepts message

— Easy to implement

— Does not require a lot of state in the hardware

— Optimizations possible (piggy-backing, reservation
of several slots .. )



RTS/CTS based protocol
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RTS/CTS based protocol Ej
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Questions?
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mcp state m
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 Each mcp requires state information
— Channel lookup table: 1 entry per channel
— RTS counter: 1 per channel
— CTS storage: 1 Bit per channel
— Backup memory to context-switch mcps: per-app

Does not scale, limit number of channels per
core
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RTS/CTS based protocol m
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RTS/CTS based protocol m

Systems @ ETH ziricn

ul-out
ul-out

ul-in
ic
ul-in
ic

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 26



RTS/CTS based protocol m
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RTS/CTS based protocol m
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Backup 1 m
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 What makes message-passing so expensive:

— Polling in case of many channels
* Implement select() in hardware

— For complex interconnects: flow control?

— Notifications, e.g. Interrupts

e Different schemes: only one interrupt for a message
burst and only if app is not currently running

e According to app priorities?
— Verification of messages, e.g. system call
e Channel Lookup on mcp
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