Message Passing Co-Processor

Stefan Kastle
stefan.kaestle@inf.ethz.ch
Systems @ ETH Zurich

Stefan Kastle <stefan.kaestle@inf.ethz.ch>

Motivation m

Systems @ ETH ziricn

e Future machines
— No shared memory
— No cache-coherence

e Explicit sharing

— Message passing

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 4

Motivation Il m

Systems @ ETH ziricn

e Message passing is a bottleneck
— Kernel entry
— Interrupt costs

=> Does not scale with number of channels

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 5

Our contribution m

Systems @ ETH ziricn

 The message passing co-processor (mcp)
— message passing in hardware, one per core?
— Offload message-passing overhead
— application cores can do useful work

e Describe the minimal interface to mcp
* Prototype of message passing hardware

— investigate protocol design space

Part 1:

DESIGN

Stefan Kastle <stefan.kaestle@inf.ethz.ch>

Minimal interface m

Systems @ ETH ziricn

e Every application needs own context on mcp
— Protection!
— Context mapped to its virtual address space

e Signaling channels

— Separate channels for each direction, no locks

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 8

Minimal interface Il m

Systems @ ETH ziricn

* Protocol to signal:

— Creation of new domains

e To create per-application state on mcp

— Creation of new channels

e Lookup of routing information for local channel id

— Context-switches
* mcp needs to context-switch as well
e Signal beginning and end of context-switch

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 9

Transparent hardware device m

Systems @ ETH ziricn

* Protocol between mcps heavily depending on:

— Architecture
— Interconnect

* Protocol is transparent to user-level apps

— Exception: flow-control?!

* mcp acts according to interface

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 10

Interconnect protocol m

Systems @ ETH ziricn

e However, we believe we need a reservation
based system

— Due to networking issues

e starvation, contention, head-of-the line blocking, ..

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 11

Messages to c2

Networking issues

Systems @ ETH ziricn
Interconnect cl v C
Per-core buffers S o
QT
7 g2
» c2 (malicious) -1 3 ©
® o
[
=
)
c3 %

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 12

Networking issues

Interconnect

Buffers are full

Messages cannot be send although
receiver has free buffer space

Stefan Kastle <stefan.kaestle@inf.ethz.ch>

Systems @ ETH ziricn

|]auueyd-1ad

s1ajjng [aA3]-Jasn

13

IMPLEMENTATION ON THE SCC

Intel SCC Overview Ej

Systems @ ETH ziricn

e 48 cores (32Bit x86)
* Groups of 2 cores called tile

router

tile
=
(@)
&
()
&

core

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 16

Intel SCC Overview Ej

Systems @ ETH ziricn

e Cores on tile share message passing buffers

— 16 KiB
— Efficient communication
between cores on tile core 2
mcp

— Mapped into virtual
address space of other
cores

mpb (16 KiB)

router

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 17

mcp implementation on SCC m

Systems @ ETH ziricn

e Every other core as dedicated mcp

e MPB holds:
— Per-application buffers (UL)

e Incoming/outgoing messages to application
— Inter-core buffers (IC)

 Messages from other mcps
e Each mcp has separate buffer -> no locking

— Signaling channels

UL | UL

i | out Signaling, ... IC (4 KiB)

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 18

mcp implementation on SCC I m

Systems @ ETH ziricn

 Reservation: RTS/CTS based

— Ready-To-Send (RTS): Sender has message to send
— Clear-To-Send (CTS): Receiver accepts message

— Easy to implement

— Does not require a lot of state in the hardware

— Optimizations possible (piggy-backing, reservation
of several slots ..)

RTS/CTS based protocol

Systems @ ETH ziricn

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 20

RTS/CTS based protocol Ej

Systems @ ETH ziricn

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 21

Systems @ ETH ziricn

Questions?

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 22

mcp state m

Systems @ ETH ziricn

 Each mcp requires state information
— Channel lookup table: 1 entry per channel
— RTS counter: 1 per channel
— CTS storage: 1 Bit per channel
— Backup memory to context-switch mcps: per-app

Does not scale, limit number of channels per
core

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 23

RTS/CTS based protocol m

Systems @ ETH ziricn

ul-in
ul-out
ic
ul-in
ul-out
ic

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 24

RTS/CTS based protocol ﬂ

Systems @ ETH ziricn

ul-out

ic
ul-in
ul-out
ic I

ul-in

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 20

RTS/CTS based protocol m

Systems @ ETH ziricn

ul-out
ul-out

ul-in
ic
ul-in
ic

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 26

RTS/CTS based protocol m

Systems @ ETH ziricn

ul-out
ul-out

ul-in
ic
ul-in
ic

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 27

RTS/CTS based protocol m

Systems @ ETH ziricn

ul-in
ul-out
ic
ul-in
ul-out
ic

Stefan Kastle <stefan.kaestle@inf.ethz.ch> 28

Backup 1 m

Systems @ ETH ziricn

 What makes message-passing so expensive:

— Polling in case of many channels
* Implement select() in hardware

— For complex interconnects: flow control?

— Notifications, e.g. Interrupts

e Different schemes: only one interrupt for a message
burst and only if app is not currently running

e According to app priorities?
— Verification of messages, e.g. system call
e Channel Lookup on mcp

	Message Passing Co-Processor
	Motivation
	Motivation II
	Our contribution
	design
	Minimal interface
	Minimal interface II
	Transparent hardware device
	Interconnect protocol
	Networking issues
	Networking issues
	Implementation on the SCC
	Intel SCC Overview
	Intel SCC Overview
	mcp implementation on SCC
	mcp implementation on SCC II
	RTS/CTS based protocol
	RTS/CTS based protocol
	Slide Number 22
	mcp state
	RTS/CTS based protocol
	RTS/CTS based protocol
	RTS/CTS based protocol
	RTS/CTS based protocol
	RTS/CTS based protocol
	Backup 1

