
Islands RTS
GHC for a multikernel

Calum McCall
Marcin Orczyk

University of Glasgow



Islands RTS - cache coherence

● Haskell RTS for machines with partial cache coherence.

● Why only partial?
○ Cache coherence will not scale to 100s of cores.
○ Cache coherence does not apply in clusters.
○ But it is cheap and works well for smaller number of 

cores!

● Systems composed of a number of islands;
○ island: a group of cache-coherent cores.



Islands RTS - overview

● Based on GHC 7 and GUM:
○ really a modified threaded mode selected at build time.

● Memory organisation:
○ separate physical heap per island,
○ virtual shared heap built with message passing.

● Implements Glasgow parallel Haskell (GpH) model:
○ par a b -- returns b and marks a for parallel evaluation,
○ idle cores evaluate marked closures (called sparks) 

transparently to the programmer.



Islands RTS - between islands

● Inspired by and based on GUM.

● Key to virtual shared heap: Fetch closure
○ a remote reference to a closure on a different island,
○ evaluation triggers migration of the closure,
○ two migration policies available:

■ move (default for un-evaluated data)
■ copy (default for evaluated data)



Islands RTS - between islands

● Global addressing system:
○ inspired by GUM,
○ hard links: ref-counted, prevent GC, reusable,
○ soft links: volatile, cannot be fetched, non-reusable.

● Messaging protocol - five main message types:
○ FETCH, DATA, FREE, SPARK
○ work polling FISH message

● Packing/unpacking routines - GUM code ported to GHC 7.

● Message passing layer:
○ use different mechanisms at different levels,
○ e.g. shared memory when available.



Islands RTS - within island

● Based on GHC 7:
○ essentially a "threaded" (SMP) GHC RTS per island,
○ message handling hooked into scheduler,
○ global addresses management hooked into GC.

● [Bad Idea] Multiple islands in the same process:
○ required wide changes to GHC RTS code

■ switch from global to per-island data structures
■ giant time sink
■ pulling patches from GHC HEAD - difficult

○ evil static thunks
■ thunks are un-evaluated closures
■ compiler allocates some closures in static memory



Islands RTS - evil static thunks



Islands RTS - results

● Working proof-of-concept implementation on x86 NUMA 
machine:

○ provides parallel speed-ups (not great performance),
○ incomplete implementation of packing/unpacking,
○ supports only multiple-islands-per-process.

 
● Identified problems with multiple islands per process:

○ large cost in terms of modified LOC,
○ static thunks are a significant issue (evil).



Islands RTS - future

● A reimplementation on top of current GHC HEAD:
○ one island per process,
○ support islands on different machines,
○ pull patches regularly.

● Support other concurrency/parallelism models of GHC:
○ look for common primitives,
○ leverage virtual heap and messaging.

● Implement on Barrelfish.

● Heterogenous islands:
○ different CPU architectures,
○ GPUs, FPGAs...



Islands on Barrelfish

● Need to represent islands on Barrelfish, Dispatcher fits this 
well.

○ multi-threaded islands need cache-coherent memory
○ otherwise one island per core

● IDC for message passing between islands



GHC RTS on Barrelfish

● GHC already partially ported by Ross McIlroy, this includes 
the RTS.

● This needs to be updated to current GHC version

● Currently, RTS is multithreaded but needs more work.

● Need to adapt GHC build system to use Barrelfish build 
system



Questions?


