idgenbssi ische H Ziirich E :
Swiss Federal Institute of Technology Zurich

Systems @ ETH zivicn

A Declarative Language Approach to
Device Configuration

Adrian Schipbach Andrew Baumann Timothy Roscoe Simon Peter
Systems Group, ETH Zurich

p | Department of Computer Science | E'

This talk is about

» Hardware resource configuration is harder than you think

1. The idealized problem is complex
2. In practice there are many exceptions and quirks

» We apply high-level languages to deal with hardware
configuration

» Approach
» Evaluation

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

v

v

v

v

Allocate hardware resources to devices

» Physical address ranges
» RAM buffers
> Interrupt lines

> oy

These resources are limited
The problem is constrained in multiple ways

Hardware in reality does not fit the specifications, it often has
bugs

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Example: PCI bus configuration

» Tree with multiple children per node
» Inner nodes: PCI bridges
» Leaves: devices
» PCI bridge hierarchy translates physical addresses on device
requests
» Base address registers (BARs) define base address

physical addresses
| | | | | |

\ \ \ \ \ \ \
root bridge

bridge 1 bridge 5

bridge 2 bridge 6 bridge 7

bridge 3
d5 d6 d7

dl1 d2 d3 d4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Example: PCI bus configuration

» Tree with multiple children per node
» Inner nodes: PCI bridges
» Leaves: devices
» PCI bridge hierarchy translates physical addresses on device
requests
» Base address registers (BARs) define base address

physical addresses

bridge 3

dl d2 d3 d4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Example: PCI bus configuration

» Tree with multiple children per node
» Inner nodes: PCI bridges
» Leaves: devices
» PCI bridge hierarchy translates physical addresses on device
requests
» Base address registers (BARs) define base address

physical addresses
| | | | | |

\ \ \ \ \ \ \ \ \ \
root bridge

Y

[— S
m & $ L @

dl1 d2 d3 d4

&y
d7

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Example: PCI bus configuration

» Tree with multiple children per node
» Inner nodes: PCI bridges
» Leaves: devices
» PCI bridge hierarchy translates physical addresses on device
requests
» Base address registers (BARs) define base address

physical addresses
| | | | | |

\ \ \ \ \ \ \ \ \ \
root bridge

bridge 7

bridge 3

bz

777777777772
dl

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Example: PCI bus configuration

» Tree with multiple children per node
» Inner nodes: PCI bridges
» Leaves: devices
» PCI bridge hierarchy translates physical addresses on
device requests
» Base address registers (BARs) define base address

physical addresses
| | | | | |

\ \ \ \ \ \ \ \ \ \
root bridge

bridge 1 bridge 5

bridge 2 bridge 6 bridge 7

bridge 3
d5 d6 d7

dl1 d2 d3 d4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Example: PCI bus configuration

» Tree with multiple children per node
» Inner nodes: PCI bridges
» Leaves: devices
» PCI bridge hierarchy translates physical addresses on device
requests
» Base address registers (BARs) define base address

physical addresses
| | | | | |

\ \ \ \ \ \ \ \ \ \
root bridge

bridge 1 bridge 5

bridge 2 bridge 6 bridge 7

bridge 3
d5s d6 d7

d1 d2 d3 d4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

1. Uninitialized PCI bus

physical addresses
0 8 16 24 I 32 40 48 56 64 72 80 88 96

d3
sz32

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

2. All devices should be configured

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
[T T L -
bridge 3 ‘ ‘
ST Z
d4 ds d6 \ < a3
sz4 sz8 sz4 sz 32
dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

3. No overlapping of siblings must occur

physical addresses
0 8 16 24 32 40 48 56 64 72 80 96
1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 ‘ bridge 1 \
— bridge 3 | \
d4 a5 d6 | < a3
sz4 sz8 sz4 sz 32
dl d7 d2
sz4 sz4 sz 16
20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

3. No overlapping of siblings must occur

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
7272 L
bridge 3 | \
| SRESSSRRRSSRR
d4 \ d3
sz4 sz8 sz4 sz 32
dl d7 d2
sz4 sz4 sz 16
20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

4. Device addresses have to be naturally aligned

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
7272 L
bridge 3 | \
T
d4 ds d6 \ a3
sz4 sz8 sz4 sz 32
dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

4. Device addresses have to be naturally aligned

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
2z 7773 [:
bridge 3 | \
T
a4 a5 d6 \ a3
sz4 sz8 sz4 sz32
alignment 8 alignment 4 dl d7 d2 alignment 32
szd4 sz4 sz 16
alignment 4 alignment 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

4. Device addresses have to be naturally aligned

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
7 L
bridge 3 |
RTY
d4 ds [\ \ a3
sz4 sz 8 sz4 sz32
dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

5. Children have to be within their parent bridges address range

physical addresses

0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
bridge 3 |
[Ty
d4 d5 do \ \ d3
sz4 sz 8 sz4 sz32
dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

5. Children have to be within their parent bridges address range

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
L
bridge 3 |
RTY
d4 ds [[] \ a3
sz4 sz 8 sz4 sz32
dl d7 d2
sz4 sz4 sz 16

20th October 2011

Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

6. The PCl tree has to fit within available address range

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
—_———————F——F——+——+———
root bridge
bridge 2 bridge 1 \ [
L T
bridge 3 | [\
RTY
d4 ds [[] \ a3
sz4 sz 8 sz4 sz32
dl d7 d2
sz4 sz4 sz 16

20th October 2011

Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

6. The PCl tree has to fit within available address range

physical addresses

0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 2 bridge 1 \
ZZ [
bridge 3 | ——
| SRANSRRRNRRR 7z 7
d4 ds d6 \ \ \ d3 /
sz 4 sz 8 sz 4 sz 32
dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

6. The PCl tree has to fit within available address range

physical addresses

0 8 16 24 32 40 48 56 64 72 80 88 96
| I I I I I I I I I I I I

T T T T T T T T T
root bridge

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

6. The PCl tree has to fit within available address range

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 1| bridge 2
bridge 3 |
RN
a3 [] d4 ds do
sz32 sz4 sz 8 sz 4
dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules.

6. The PCl tree has to fit within available address range

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 1| bridge 2

bridge 3 | L/_,_,_ﬂ
[
b “ oy i “
sz32 sz4 sz 8 sz 4

dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

In theory, apply the following rules. Until here idealized problem.

6. The PCl tree has to fit within available address range

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1

root bridge
bridge 1| bridge 2
bridge 3
d3 ds d6 d4
5232 S sz8 sz4 sz4
d2 d1 d7

sz 16 sz4 sz4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

7. Some devices have fixed address requirements

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge I | bridge 2 |
\ bridge 3 | \ []
ds d6 d4
5232 sz8 sz4sz4
fixed address O d2 d7

sz 16 sz4sz4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

7. Some devices have fixed address requirements

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 1 bridge 2 |

ds d6 d4
sz8 sz4sz4

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

7. Some devices have fixed address requirements

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1
root bridge
bridge I | bridge 2
bridge 3 |
SSNNREN
d4 d5 d6
S ‘ sz4 sz8 sz4
dl d7 d2
sz4 sz4 sz 16 &3
5232

20th October 2011

Systems Group

Department of Computer Science

ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

7. Some devices have fixed address requirements

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge I | bridge2—|
bridge 3 |
SNNNENNNNRERNNY
da 45— d6
S sz4 sz8 sz4
dl d7 d2
sz4 sz4 sz 16 &3
5232

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

7. Some devices have fixed address requirements

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge I | bridge 2

] ——— T
bridge 3 |
“ + by I
S sz32 sz4 sz8 sz 4

dl d7 d2
sz4 sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

7. Some devices have fixed address requirements

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge
bridge 1 | bridge 2 |
bridge 3 \ \ []
d3 d5 d4 d6

S 5232 sz8 sz4 sz4

dl d7 d2

sz4sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

8. Physical memory regions have holes

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge Lo
bridge 1| bridge 2 |
bridge3 | : []
[] \ d3 ©d5 d4 o d6
5232 holesz8 sz4 sz4
dl d7 d2
sz4sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

8. Physical memory regions have holes

physical addresses
0 8 16 24 32 40 48 56 64 72 80 88 96
1 1 1 1 1 1 1 1 1 1 1 1 1
root bridge Lo
e] T
bridge3 | (1 L D
[] \ d3 TS d4—d6
5232 holesz8 sz4 sz4
dl d7 d2
sz4sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

8. Physical memory regions have holes

physical addresses
0 8 16 24 32 40 48 56 64 68 72 80 88 96
1 1 1 1 1 1 1 1 —— 1 1 1
root bridge !
bridge 1| ' bridge? |
1]
bridge3 | '
[] \ a3 ©o1ds d4 d6
5232 hole” sz8 sz4sz4
dl d7 d2
sz4sz4 sz 16

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

Hardware resource allocation in PCI

But in practice handle also special cases.

8. Physical memory regions have holes

64 72 80 88
| | |

96

! Ibridge 2

|
' '

0 8 16 24
| | | |
I T T T
bridge 1
bridge3 |
dl d7 d2
sz4sz4 sz 16

20th October 2011

Systems Group

hole d4 d5_ d6
sz4 sz4 sz8 sz4

Department of Computer Science | ETH Zirich

\ e,

Quirks (some of the 3000 LOCs in Linux’s quirks.c)

» /*Following the PCI ordering rules is optional on the
AMD762. I’m not sure what the designers were smoking
but let’s not inhale...

To be fair to AMD, it follows the spec by default, its
BIOS people who turn it off! */

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Quirks (some of the 3000 LOCs in Linux’s quirks.c)

» /*Following the PCI ordering rules is optional on the
AMD762. I’m not sure what the designers were smoking
but let’s not inhale...

To be fair to AMD, it follows the spec by default, its
BIOS people who turn it off! */

» This card decodes and responds to addresses not
apparently assigned to it. We force a larger
allocation to ensure that nothing gets put too close
to it.

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Quirks (some of the 3000 LOCs in Linux’s quirks. c)

» /*Following the PCI ordering rules is optional on the

AMD762. I’m not sure what the designers were smoking
but let’s not inhale...

To be fair to AMD, it follows the spec by default, its
BIOS people who turn it off! */

This card decodes and responds to addresses not
apparently assigned to it. We force a larger
allocation to ensure that nothing gets put too close
to it.

S3 868 and 968 chips report region size equal to 32N,
but they decode 64M.

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Quirks (some of the 3000 LOCs in Linux’s quirks.c

» /*Following the PCI ordering rules is optional on the
AMD762. I’m not sure what the designers were smoking
but let’s not inhale...

To be fair to AMD, it follows the spec by default, its
BIOS people who turn it off! */

» This card decodes and responds to addresses not
apparently assigned to it. We force a larger
allocation to ensure that nothing gets put too close
to it.

» S3 868 and 968 chips report region size equal to 32M,
but they decode 64M.

» the first BAR is the location of the IO APIC...we must
not touch this (and it’s already covered by the
fixmap), so forcibly insert it into the resource tree,
The next five BARs all seem to be rubbish, so just
clean them out

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Quirks (some of the 3000 LOCs in Linux’s quirks.c

» /*Following the PCI ordering rules is optional on the
AMD762. I’m not sure what the designers were smoking
but let’s not inhale...

To be fair to AMD, it follows the spec by default, its
BIOS people who turn it off! */

This card decodes and responds to addresses not
apparently assigned to it. We force a larger
allocation to ensure that nothing gets put too close
to it.

S3 868 and 968 chips report region size equal to 32N,
but they decode 64M.

the first BAR is the location of the IO APIC...we must
not touch this (and it’s already covered by the
fixmap), so forcibly insert it into the resource tree,
The next five BARs all seem to be rubbish, so just
clean them out

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

What do people do today?

» Linux uses BIOS allocation and runs fixup procedure
» Configure missing devices
» Allocate address range from bridge, or fail if bridge does not
have enough free address range
» Windows Vista, Server 2008: PCI Multi-Level Rebalance
» Can move bridges to a place with bigger free space
» IBM US patent 5,778,197, 1998: Method for allocating system
resources in a hierarchical bus structure
» Recursive bottom-up algorithm to allocate resources

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

What we wanted to try

» Express allocation problem as constraint logic program (CLP)
in high-level language

v

Explore modern techniques to configure hardware

v

Separate allocation computation from register access

v

Why CLP?
» Allows constraining variables before assigning concrete values
Natural way to implement allocation rules
Naturally express hardware constraints and limitations
Handle quirks in a clean way, not ad-hoc
Leads to platform independence and portability

v v v

v

v

We use ECL'PS®: Prolog + constraint extensions

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

How does CLP work?

1. Create tree data structure which matches the PCI tree

2. Create Base and Size variables in every node in the data
structure

3. Apply constraints to these variables

4. Instantiate the variables with concrete values representing
PCl base adresses

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Allocation rule: siblings must not overlap
Code written in ECL'PS®

nonoverlap(Tree) :-
% collect direct children of this root in ChildList
t(_ ,Children) = Tree,
maplist(root,Children,ChildList),
% if there are direct children...
(not ChildList=[] ->
% determine base and size of each child
maplist(base,ChildList,Bases),
maplist(size,ChildList,Sizes),
% constrain the regions they define not to overlap
disjunctive(Bases,Sizes)
; true
)
% recurse on all children
(foreach(El, Children) do nonoverlap(El)).

o (w1 =

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Quirk: do not move BARs pointing to IOAPICs

Code written in ECL'PS®

keep_ioapic_bars(_, [1).
keep_ioapic_bars(Buselements, [H|IOAPICList]) :-
(% get the base of the first IOAPIC
range(B, _) = H,
% check if a BAR with the same original base exists

bar(addr (Bus,Dev,Fun),_,OrigBase,_,_,_,_),
OrigBase =:= B ->
% if found, keep the device at its original address
keep_orig_addr(Buselements, _, _, _, Bus, Dev, Fun);
true

)

% iterate on the IOAPIC list
keep_ioapic_bars(Buselements, IOAPICList).

o [-
20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Implementation

» We program the PCI bus in our research operating system
Barrelfish like this

» We use ECL'PS®-CLP engine to run the algorithm

» Starts early in the operating system boot sequence
» Uses a RAM disk to load everything necessary
> Is self-contained

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

OS startup
procedure

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

OS startup
procedure starts

CLP engine

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

starts

OS startup
procedure starts

CLP engine PCI driver

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

starts
OS startup) _
procedure | starts CLP engine PCI driver
1. scan
hardware
information

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

starts
OS startup /m .
procedure | starts CLP engine PCI driver
1. scan
hardware
information

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

starts
OS startup /m .
procedure [sars | CLP engine =i | PCl driver
1. scan
hardware
information

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

starts
OS startup /m .
procedure [sars | CLP engine =iy | PCl driver

4. get the result

1. scan
hardware
information

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence

starts
OS startup /m .
procedure [sars | CLP engine =iy | PCl driver

4. get the result

1. scan 5. program
hardware PCI registers
information

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Evaluation

» We care about
» Correctness of the allocation
» Maintainability of the code
» Performance not the primary focus
» We used nine different real hardware systems for the
evaluation

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Evaluation

C LOC CLOC CLPLOC
Register access 897 Register access 235
Data structure 1686 Data structure 817 31
Resource management 706 Algorithm 224
ACPI 121 ACPI 360
Interrupts 521 Interrupts 660 28
Miscellaneous 45 Miscellaneous 109
Total 3976 Total 2181 283

Table: LOC Linux

20th October 2011

Table: LOC our approach

Systems Group | Department of Computer Science | ETH Zirich

Evaluation

C LOC CLOC CLPLOC
Register access 897 Register access 235
Data structure 1686 Data structure 817 31
Resource management 706 Algorithm 224
ACPI 121 ACPI 360
Interrupts 521 Interrupts 660 28
Miscellaneous 45 Miscellaneous 109
Total 3976 Total 2181 283

Table: LOC Linux

» Do not move a device:

20th October 2011

Table: LOC our approach

Systems Group | Department of Computer Science | ETH Zirich

Evaluation

C LOC CLOC CLPLOC
Register access 897 Register access 235
Data structure 1686 Data structure 817 31
Resource management 706 Algorithm 225
ACPI 121 ACPI 360
Interrupts 521 Interrupts 660 28
Miscellaneous 45 Miscellaneous 109
Total 3976 Total 2181 284

Table: LOC Linux

Table: LOC our approach

» Do not move a device: call keep_orig_addr()

20th October 2011

Systems Group | Department of Computer Science | ETH Zirich

Evaluation

C LOC CLOC CLPLOC
Register access 897 Register access 235
Data structure 1686 Data structure 817 31
Resource management 706 Algorithm 225
ACPI 121 ACPI 360
Interrupts 521 Interrupts 660 28
Miscellaneous 45 Miscellaneous 109
Total 3976 Total 2181 284

Table: LOC Linux

Table: LOC our approach

» Do not move a device: call keep_orig_addr()

» |IOAPIC appears as BAR:

20th October 2011

Systems Group | Department of Computer Science | ETH Zirich

Evaluation

C LOC CLOC CLPLOC
Register access 897 Register access 235
Data structure 1686 Data structure 817 31
Resource management 706 Algorithm 239
ACPI 121 ACPI 360
Interrupts 521 Interrupts 660 28
Miscellaneous 45 Miscellaneous 109
Total 3976 Total 2181 298

Table: LOC Linux

Table: LOC our approach

» Do not move a device: call keep_orig_addr()

» |IOAPIC appears as BAR: implement keep_ioapic_bars()

20th October 2011

Systems Group | Department of Computer Science | ETH Zirich

Evaluation

C LOC CLOC CLPLOC
Register access 897 Register access 235
Data structure 1686 Data structure 817 31
Resource management 706 Algorithm 239
ACPI 121 ACPI 360
Interrupts 521 Interrupts 660 28
Miscellaneous 45 Miscellaneous 109
Total 3976 Total 2181 298

Table: LOC Linux Table: LOC our approach

» Do not move a device: call keep_orig_addr()
» IOAPIC appears as BAR: implement keep_ioapic_bars()
» Additional requirements to handle quirks easy to apply

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Evaluation

Memory consumption and performance

ECL'PS® is about 16242 LOCs of C

Solver executable (statically linked): 1.5MB
600kB RAM disk

60MB dynamically allocated RAM buffers
Execution time in the range of 2ms to 36ms

v

v

v

v

v

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Conclusion

» PCI configuration in the real world is a hard, irregular problem

» Declarative languages
» Tradeoff CPU cycles and memory footprint for simpler code
» Facilitate handling quirks and other hardware bugs
» We think it is a promising approach for dealing with a large,
diverse, and evolving hardware base

Download:
http://www.barrelfish.org

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

October 2011

Changes to quirks.c
Kernel 2.6.36, 2005-2010

#commits | Year
26 | 2005
47 | 2006
49 | 2007
43 | 2008
42 | 2009
23 | 2010

20th October 2011

Systems Group | Department of Computer Science

ETH Zirich

Code examples

Keep original address

keep_orig_addr([], _, _, _, —, —,).
keep_orig_addr([H|T1], C1, SubCl, PIf, Bs, Dv, Fn)
(

% if this is a device BAR...

= H,
% and its device is in the required class...
device(_,addr(Bs,Dv,Fn),_,_,Cl, SubCl, PIf,),
% lookup the original base address of the BAR
bar(addr(Bs,Dv,Fn) ,BARNr,OrigBase,_,_,_,_) ->

% constrain the Base to equal its original value
Base $= OrigBase
; true
)
% recurse on remaining devices
keep_orig_addr(T1l, Cl, SubCl, PIf, Bs, Dv, Fn).

o (w1 =

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Discussion

Advantages
» Policy/mechanism separation

» Handle special cases
completely in ECL'PS®

» General data entries
» Late-binding of algorithm
» Platform-independence

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Discussion

Advantages
» Policy/mechanism separation

» Handle special cases
completely in ECL'PS®

» General data entries
» Late-binding of algorithm
» Platform-independence

Disadvantages
» Increased resource usage
» Large code base

v

Boot sequence

v

Learning curve

Need sometimes to understand
how solver works

v

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Space consumption

» artificial experiment

» add more and more devices

» sum of address space requests of all devices fill available
range

» monitor behaviour of postorder algorithm and CLP algorithm

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Space consumption

Physical address size required [bytes]

7e+08 —
Root size (max) ;
Device sum --@--]
6e+08 | CLP ,_ |
Postorder sorted ascending --*-- /
5e+08 | / 5|
* .
!/ ,,"E’
4e+08 | ,/,W'E |
3e+08 + #}g P |
2e+08 | s 7,35':;"‘ |
#°
1e+08 P |
.;«"‘é .
0m2 ‘ ‘ ‘ |
’ 20 40 60 80 100

20th October 2011

Systems Group | Department of Computer Science

Fill rate (device sum / max available size) [%]

ETH Zirich

Valid and invalid configurations
Valid configurations

Invalid configurations

20th October 2011

Systems Group | Department of Computer Science

ETH Zirich

Valid and invalid configurations

Valid configurations Invalid configurations

Example 1
physical addresses

root bridge

bridge 1 |
I]

N E—

d1

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Valid and invalid configurations

Valid configurations Invalid configurations
Example 1
physical addresses physical addresses
‘ ‘ ‘ ‘ oot bridge‘ ‘ ‘ ‘ o ‘ ‘ ‘ oot bridge‘ ‘ ‘ ‘ ‘
bridge 1 | bridge 1 / —
w@ x

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Valid and invalid configurations

Valid configurations

Invalid configurations

Example 1
physical addresses physical addresses
| I I I I I I I I I | I I I I
f T T T T T T T T T f T T T T
root bridge root bridge
bridge 1 | bridge 1 /
] [
dl

Example 2

physical addresses
I |

T T
root bridge

bridge 1|
[bridge 2

bridge 3

d1 dz

20th October 2011

Systems Group

Department of Computer Science | ETH Zirich

Valid and invalid configurations

Valid configurations Invalid configurations
Example 1
physical addresses physical addresses
L | | | | | | | | | L | | | | | | | | |
‘ ‘ ‘ ‘ oot bridge‘ ‘ ‘ ‘ o ‘ ‘ ‘ oot bridge‘ ‘ ‘ ‘ ‘
—
bridge 1 | bridge 1 /
] o
d1 d
Example 2
physical addresses physical addresses
| | | | | | | | | IR | | | | | | | | |
‘ ‘ ‘ ‘ r‘oot bridgé ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ r‘oot bridge‘ ‘ ‘ ‘ ‘
bridge 1| bridge 1|
[bridge 2 [bridge 2
bridge 3 bridge 3
di a2 d1 a2

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?

>

placement of child depends on placement of parent

v

permutation of siblings possible at every level
natural address alignment: big gaps possible
> bad for resource utilization
» good for hotplug
fixed address requirements influence placing of parent
bridges and siblings
finding reasonable tree permutation is hard

» changing order of bridges causes children to move as well
» children can also be permuted

v

v

v

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?

Example
physical addresses
| | | | | | | | | |
I T T T T T T T T T
root bridge
bridge 1 bridge 2

dl d2

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?
Example
phys‘jfgl addre‘sses

T T
root bridge

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?

Example

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?

Example

» alignmeht 8

IIIJIIIIJIJA
dl d2
| | |
I T T
bridge 1
dl d2
20th October 2011

Systems Group | Department of Computer Science

ETH Zirich

Why is it difficult?

Example

» alignmeht 8 '
777777777

bridge 1

20th October 2011

Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?

Example

» alignmeht 8 '
777777777

physical addresses
116 |

|
\ \ \
' root bridge

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Why is it difficult?
Example
5 phys‘j]cgl addre‘sses

physjlcgl addresses
| |

\ 1 ——— \ 1
P root bridge

physical addresses
| | | | | | | |

I 1 1 1 1 1 1 1
root bridge

20th October 2011 Systems Group | Department of Computer Science

ETH Zirich

The Problem

» In theory, find a valid allocation of address ranges to devices,
such that
» All devices and bridges are configured
No overlapping of siblings occurs
Addresses are aligned to device specific boundaries
Children are within their parent bridge’s address window
Complete PCl tree fits within available physical address space

v

v

v

v

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

The Problem

» In theory, find a valid allocation of address ranges to devices,
such that
» All devices and bridges are configured
» No overlapping of siblings occurs
» Addresses are aligned to device specific boundaries
» Children are within their parent bridge’s address window
» Complete PCI tree fits within available physical address space

» But in practice also

» Certain devices can only have (partially) fixed addresses

» Some bridges must be programmed with predefined values
» Some physical regions have “holes” that can’t be used

» “Quirks”

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Implementation

» We use ECL'PS®-CLP to implement the algorithm
» Prolog + constraint extensions
» We use a real system: Barrelfish
» New operating system for heterogeneous manycore systems
» Implemented from scratch — lots of freedom to try out ideas
» Implementation done in the system knowledge base (SKB)
» User-space service containing ECL'PS®
> Contains data base with hardware facts in Prolog form
» Uses RAM disk to access ECL'PS® code and is self-contained

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence in Barrelfish

CPU

PCI bus

20th October 2011

T

Systems Group | Department of Computer Science

[m]

=
ETH Zirich

Boot sequence in Barrelfish

CPU Driver
(Kernel)

CPU

PCI bus

20th October 2011

T

Systems Group | Department of Computer Science

[m]

[
ETH Zirich

Boot sequence in Barrelfish

Init

starts

CPU Driver
(Kernel)

CPU

PCI bus

20th October 2011

T

Systems Group | Department of Computer Science

[m]

[
ETH Zirich

Boot sequence in Barrelfish

Init e SKB
starts
CPU Driver
(Kernel)
CPU

PCI bus

20th October 2011

Systems Group | Department of Computer Science

ETH Zirich

Boot sequence in Barrelfish

starts

Init pro— SKB PCI driver
starts
CPU Driver
(Kernel)

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence in Barrelfish

/\

20th October 2011

starts
Init starts SKB
starts
CPU Driver
(Kernel)
CPU

PCI driver

1. scan
hardware
information

PCI bus

T

Systems Group | Department of Computer Science | ETH Zirich

Boot sequence in Barrelfish

starts

it starts SKB PCI driver
sares 1. scan
hardware
CPU Driver information
(Kernel)

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence in Barrelfish

starts

starts 3. call algorithm PCl driver
s 1. scan
hardware
CPU Driver information
(Kernel)

PCI bus

20th October 2011 Systems Group | Department of Computer Science | ETH Zirich

Boot sequence in Barrelfish

20th October 2011

starts
starts 3. call algorithm PCl driver
4. get the result
s 1. scan
hardware
CPU Driver information
(Kernel)
PCI bus
CPU :I

Systems Group | Department of Computer Science | ETH Zirich

Boot sequence in Barrelfish

20th October 2011

starts
starts 3. call algorithm PCI driver
4. get the result
starts 1. scan 5. program
hardware PCI registers
CPU Driver information
(Kernel)
PCI bus

Systems Group | Department of Computer Science | ETH Zirich

