i Dynamic inter-core scheduling
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avoiding contention
with malleable domains
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Overall Goals

Allow for shared memory based parallel
programming models

OpenMP, Wool, Cilk++

take advantage of the underlying hardware
architecture.

... While exploiting the message passing
nature of Barrelfish

scalability
portability
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Goals cont'd

Increase throughput in Barrelfish by using
dynamic inter-core scheduling

Inter-core
system wide scheduling
Dynamic
modifiable at any point of execution
In Barrelfish
maintain a scalable and portable design
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Motivation

Work-stealing scheduling can be wasteful
Threads can unnecessarily busy-wait

Some real life applications are not that
parallel

most expose fluctuating parallelism throughout
their execution

Current parallel programming models:

focus on running programs in isolation
have minimal operating system support
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Shared memory programming
models (OpenMP, Wool, Cilk++)

Work-stealing / task-based models scale
easlily

Wool already ported

very fast (low overhead) implementation of
iIndependent task parallelism

application state in the stack
Cilk++ requires a custom compiler (hake?)

important reason for needing the Cilk way of
doing things:

application state in the heap
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Scheduling

Split into two cooperating levels

Kernel level,

system wide, mostly space-sharing, scheduler

| aware of the global state and the availability of
| diverse resources

User level,

application specific scheduler
aware of the parallelism in the application

—
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User level scheduler

Integrated into the app
Schedules a process' t

find work”

ication run time

nreads among the

available cores (domain)

Provides feedback on per core efficiency, to
the Kernel level scheduler

initial metric: wasted cycles
“cycles spent while unsuccessfully trying to
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Kernel-level scheduler

Dynamically allots cores to processes

accepts feedback on process efficiency per
core

modifies the domain of each process for
maximum resource utilization

Distributed service

multiple instances overlook distinct segments
domains extend over multiple segments

leader election decides primary instance per
process
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» 4 sections, 4 scheduler

ection 1 Sactian 2 Instances
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Malleable domains

Load balance the system by modifying the
domain of each process

unwanted worker-threads are suspended
or new ones are added

Worker-thread suspension tricky

lazy-suspension: threads are moved to a new
core. scheduled until their subtree is synced

Immediate suspension: application state in
the heap’, so some other worker can
Immediately take over
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| Immediate suspension |

Georgios Varisteas 2011 Mﬁmédgearch Em; I:zmz%l':{f SIGS



15

Swedish

Institute of

Computer .
Sciance

Georgios Varisteas 2011 Miﬁ’ggeamh ﬁm;



Time sharing not always avoided

Phase-lock gang scheduling

Efficient gang scheduling for barrelfish

Joining a task requires simultaneous
execution of the workers involved
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Future Work

Locality aware allotment of cores

Handling the absence of shared-memory
support by the underlying architecture

Explore heterogeneous architectures and take
Into account core properties
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THANK YOU

Q&A
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