i Dynamic inter-core scheduling
in Barrelfish

avoiding contention
with malleable domains

Georgios Varisteas October 2011

Swedish

Ferns Institute of

& ; Computer .
Science

Georgios Varisteas 2011

Outline

* |Introduction

| * Programming models
» Scheduling

» Malleability

» Future work

Georgios Varisteas 2011

Overall Goals

Allow for shared memory based parallel
programming models

OpenMP, Wool, Cilk++

take advantage of the underlying hardware
architecture.

... While exploiting the message passing
nature of Barrelfish

scalability
portability

Georgios Varisteas 2011

Goals cont'd

Increase throughput in Barrelfish by using
dynamic inter-core scheduling

Inter-core
system wide scheduling
Dynamic
modifiable at any point of execution
In Barrelfish
maintain a scalable and portable design

Georgios Varisteas 2011

Motivation

Work-stealing scheduling can be wasteful
Threads can unnecessarily busy-wait

Some real life applications are not that
parallel

most expose fluctuating parallelism throughout
their execution

Current parallel programming models:

focus on running programs in isolation
have minimal operating system support

J
|

Georgios Varisteas 2011

Shared memory programming
models (OpenMP, Wool, Cilk++)

Work-stealing / task-based models scale
easlily

Wool already ported

very fast (low overhead) implementation of
iIndependent task parallelism

application state in the stack
Cilk++ requires a custom compiler (hake?)

important reason for needing the Cilk way of
doing things:

application state in the heap

Georgios Varisteas 2011

Scheduling

Split into two cooperating levels

Kernel level,

system wide, mostly space-sharing, scheduler

| aware of the global state and the availability of
| diverse resources

User level,

application specific scheduler
aware of the parallelism in the application

—

Georgios Varisteas 2011

Runtime 1

Runtime 2

Runtime 1

Runtime 2

A

Georgios Varisteas 2011

Swedish
Institute of
Computer

Sciance

Microsoft

Research né,:

SICS

User level scheduler

Integrated into the app
Schedules a process' t

find work”

ication run time

nreads among the

available cores (domain)

Provides feedback on per core efficiency, to
the Kernel level scheduler

initial metric: wasted cycles
“cycles spent while unsuccessfully trying to

Georgios Varisteas 2011

Kernel-level scheduler

Dynamically allots cores to processes

accepts feedback on process efficiency per
core

modifies the domain of each process for
maximum resource utilization

Distributed service

multiple instances overlook distinct segments
domains extend over multiple segments

leader election decides primary instance per
process

Georgios Varisteas 2011

l Inter-Core communication
= |ntra-Core communication

Task | Task | Task

- Process 1

Worker

Scalablllty and Portablllty’?

Pmcess 2

Monitor

Kern el

CPU driver

Task sk | [sk | [sk | :
: | Task | | Task || Task |
Task 8 Task I :
Worker
Worker

Worker

System-wide

scheduler System-wide

scheduler

Monitor .
LS Monitor

S eliEs CPU driver

CPU driver

Georgios Varisteas 2011

Swedish
Institute of
Oompule

iance

Microsoft

Research n’é?

SICS

» 4 sections, 4 scheduler

ection 1 Sactian 2 Instances

1

1

BE N I - Yellow process extended
. over all sections
11]

1 | | | » Section 4 has primary
11 .. L control over the yellow
'-..... process

ection Section 4

12 |

Georgios Varisteas 2011 "Research Em; o

Malleable domains

Load balance the system by modifying the
domain of each process

unwanted worker-threads are suspended
or new ones are added

Worker-thread suspension tricky

lazy-suspension: threads are moved to a new
core. scheduled until their subtree is synced

Immediate suspension: application state in
the heap’, so some other worker can
Immediately take over

13

llllllll

M «"”m% Instiut
Georgios Varisteas 2011 Research nmj = o

| Immediate suspension |

Georgios Varisteas 2011 Mﬁmédgearch Em; I:zmz%l':{f SIGS

15

Swedish

Institute of

Computer .
Sciance

Georgios Varisteas 2011 Miﬁ’ggeamh ﬁm;

Time sharing not always avoided

Phase-lock gang scheduling

Efficient gang scheduling for barrelfish

Joining a task requires simultaneous
execution of the workers involved

Georgios Varisteas 2011

Future Work

Locality aware allotment of cores

Handling the absence of shared-memory
support by the underlying architecture

Explore heterogeneous architectures and take
Into account core properties

Georgios Varisteas 2011

THANK YOU

Q&A

18

Georgios Varisteas 2011 Mﬁ%';earch nmj n I%|SIGS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

