
Dynamic inter-core scheduling
in Barrelfish

.

avoiding contention
with malleable domains

Georgios Varisteas October 2011

Georgios Varisteas 2011

2

Outline

● Introduction
● Programming models
● Scheduling
● Malleability
● Future work

Georgios Varisteas 2011

3

Overall Goals

● Allow for shared memory based parallel
programming models

– OpenMP, Wool, Cilk++
– take advantage of the underlying hardware

architecture.
● … while exploiting the message passing

nature of Barrelfish
– scalability
– portability

Georgios Varisteas 2011

4

Goals cont'd

● Increase throughput in Barrelfish by using
dynamic inter-core scheduling

– Inter-core
● system wide scheduling

– Dynamic
● modifiable at any point of execution

– In Barrelfish
● maintain a scalable and portable design

Georgios Varisteas 2011

5

Motivation
● Work-stealing scheduling can be wasteful

– Threads can unnecessarily busy-wait
● Some real life applications are not that

parallel
– most expose fluctuating parallelism throughout

their execution
● Current parallel programming models:

– focus on running programs in isolation
– have minimal operating system support

Georgios Varisteas 2011

6

Shared memory programming
models (OpenMP, Wool, Cilk++)

● Work-stealing / task-based models scale
easily

● Wool already ported
– very fast (low overhead) implementation of

independent task parallelism
application state in the stack

● Cilk++ requires a custom compiler (hake?)
– important reason for needing the Cilk way of

doing things:
application state in the heap

Georgios Varisteas 2011

7

Scheduling

● Split into two cooperating levels
● Kernel level,

– system wide, mostly space-sharing, scheduler
– aware of the global state and the availability of

diverse resources
● User level,

– application specific scheduler
– aware of the parallelism in the application

Georgios Varisteas 2011

8

Georgios Varisteas 2011

9

User level scheduler

● Integrated into the application run time
● Schedules a process' threads among the

available cores (domain)
● Provides feedback on per core efficiency, to

the Kernel level scheduler [1]
– initial metric: wasted cycles

“cycles spent while unsuccessfully trying to
find work”

Georgios Varisteas 2011

[1] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-stealing with
 parallelism feedback. ACM Transactions on Computer Systems, 26(3):1-32, September 2008.

10

Kernel-level scheduler
● Dynamically allots cores to processes

– accepts feedback on process efficiency per
core

– modifies the domain of each process for
maximum resource utilization

● Distributed service
– multiple instances overlook distinct segments
– domains extend over multiple segments
– leader election decides primary instance per

process

Georgios Varisteas 2011

11

Scalability and Portability?

Georgios Varisteas 2011

12

Georgios Varisteas 2011

● 4 sections, 4 scheduler
instances

● Yellow process extended
over all sections

● Section 4 has primary
control over the yellow
process

13

Malleable domains
● Load balance the system by modifying the

domain of each process
– unwanted worker-threads are suspended
– or new ones are added

● Worker-thread suspension tricky
– lazy-suspension: threads are moved to a new

core. scheduled until their subtree is synced
– immediate suspension: application state in

the heap1, so some other worker can
immediately take over

1) Continuation-passing-style: Shared memory is used instead of the CStack.

Georgios Varisteas 2011

14

Immediate suspension

Georgios Varisteas 2011

15

Lazy suspension

Georgios Varisteas 2011

16

Time sharing not always avoided

● Phase-lock gang scheduling [1]
– Efficient gang scheduling for barrelfish

● Joining a task requires simultaneous
execution of the workers involved

Georgios Varisteas 2011

[1] S. Peter et al., “Design principles for end-to-end multicore schedulers,” in Proceedings of the 2nd
USENIX conference on Hot topics in parallelism, 2010, p. 10.

17

Future Work

● Locality aware allotment of cores

● Handling the absence of shared-memory
support by the underlying architecture

● Explore heterogeneous architectures and take
into account core properties

Georgios Varisteas 2011

18

THANK YOU

Q & A

Georgios Varisteas 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

