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Overall Goals

● Allow for shared memory based parallel 
programming models

– OpenMP, Wool, Cilk++
– take advantage of the underlying hardware 

architecture.
● … while exploiting the message passing 

nature of Barrelfish
– scalability
– portability
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Goals cont'd

● Increase throughput in Barrelfish by using 
dynamic inter-core scheduling

– Inter-core
● system wide scheduling

– Dynamic
● modifiable at any point of execution

– In Barrelfish
● maintain a scalable and portable design

Georgios Varisteas 2011



5

Motivation
● Work-stealing scheduling can be wasteful

– Threads can unnecessarily busy-wait
● Some real life applications are not that 

parallel
– most expose fluctuating parallelism throughout 

their execution
● Current parallel programming models:

– focus on running programs in isolation
– have minimal operating system support
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Shared memory programming 
models (OpenMP, Wool, Cilk++)

● Work-stealing / task-based models scale 
easily

● Wool already ported
– very fast (low overhead) implementation of 

independent task parallelism
application state in the stack

● Cilk++ requires a custom compiler (hake?)
– important reason for needing the Cilk way of 

doing things: 
application state in the heap
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Scheduling

● Split into two cooperating levels
● Kernel level, 

– system wide, mostly space-sharing, scheduler
– aware of the global state and the availability of 

diverse resources
● User level, 

– application specific scheduler
– aware of the parallelism in the application
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User level scheduler

● Integrated into the application run time
● Schedules a process' threads among the 

available cores (domain)
● Provides feedback on per core efficiency, to 

the Kernel level scheduler [1]
– initial metric: wasted cycles

“cycles spent while unsuccessfully trying to 
find work”
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[1]  Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-stealing with
      parallelism feedback. ACM Transactions on Computer Systems, 26(3):1-32, September 2008.
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Kernel-level scheduler
● Dynamically allots cores to processes

– accepts feedback on process efficiency per 
core

– modifies the domain of each process for 
maximum resource utilization

● Distributed service
– multiple instances overlook distinct segments
– domains extend over multiple segments
– leader election decides primary instance per 

process
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Scalability and Portability?
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● 4 sections, 4 scheduler 
instances

● Yellow process extended 
over all sections

● Section 4 has primary 
control over the yellow 
process
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Malleable domains
● Load balance the system by modifying the 

domain of each process
– unwanted worker-threads are suspended
– or new ones are added

● Worker-thread suspension tricky
– lazy-suspension: threads are moved to a new 

core. scheduled until their subtree is synced
– immediate suspension: application state in 

the heap1, so some other worker can 
immediately take over

1) Continuation-passing-style: Shared memory is used instead of the CStack.
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Immediate suspension
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Lazy suspension
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Time sharing not always avoided

● Phase-lock gang scheduling [1]
– Efficient gang scheduling for barrelfish

● Joining a task requires simultaneous 
execution of the workers involved
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[1]  S. Peter et al., “Design principles for end-to-end multicore schedulers,” in Proceedings of the 2nd 
USENIX conference on Hot topics in parallelism, 2010, p. 10.
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Future Work

● Locality aware allotment of cores

● Handling the absence of shared-memory 
support by the underlying architecture

● Explore heterogeneous architectures and take 
into account core properties
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THANK YOU

Q & A
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